2019考研数学二考试真题答案解析(完整版)来源:文都教育1.(C)3tan~3xxx2.(B)'sincos2sin,"sin,yxxxxyxx令"0y得0,,xx又因为"'sincos,yxxx将上述两点代入得"'()0,y所以(,2)是拐点.3.(A)0ed(2)1xxxP发散(A)或000dee|edxxxxxx00ede|011xxx4.(D)解:由条件知特征根为121,特征方程为212()()210,故a=2,b=1,而y*=ex为特解,代入得C=4,选(D)5.因为2222sinxyxy+<+22221cosxyxy-+<+2131IIII\<<因为2222221cos2sinsin22xyxyxy++-+=222222sin2sincos22xyxyxy+++=因为2222424xyxypp++<\<2222sincos22xyxy++\<22221cossinxyxy\-+<+32II\<321III\<<选A6.解,必要性()()fxgx,相切于a则''()()()aafagafg''""322''"""""2.()()[1']0()()()()()()()()lim2()()2()22limlimxaxaxayPyagayfxgxfxgxfxgxfagafaxaxe充分性2''()()()()()()()()()2()()()()()lim()()22limlimxaxxxaxafxgxOfagaxafgfagaxafxgxfagafaga=f(x)与g(x)相切于点a.且曲率相等.选择(B)7.因为0Ax=的基础解系中只有2个向量()24()nrArA\-==-()0rA*\=\选A8.选(C)解:由22AAE+=得22λλ=+,λ为A的特征值,2=-l或1,又1234Aλλλ=,故1231λ=λ=-2λ=,,规范形为222123yyy--,选(C)9.()()02(21)212(21)21000222ln2lim22ln221lim2lim121limeee4exxxxxxxxxxxxxxxxxx®+-+-×+-+++=++-====10.当32tp=时,3333sin11cos12222xypppp=-=+=-=,即为点31,12p÷ç+÷ç÷ç23ddd1d1sin1ddd1cosd1tyytykxtxtxp=-==×===--331111.22322yxyxyxppp÷ç-=---Þ-=-++÷ç÷çÞ=-++在y轴上的截矩为322p+11.2322222;zyyzyyyfffyfffxxxyxx÷ç÷ç÷=-=-=+=+÷çç÷÷çç÷ç32233222222zzyyxyxfyffxyxxyyfyffxxyyfx+=-×+×+=-++÷ç÷=ç÷ç÷ç12.解析:lncos,06yxx2606206600sin1dcos1dcos231secdln|sectan|lnln3ln3323xlxxxxxxxx13.解析:211001212012212120101201222100sin()d(d)d1sindd21sinsind|d21sind21111sind(cos)|(cos11)2244xxxtfxxxtxtttxttxxtxxtxxxxxxx...