我们建议考试以下面的方式进行突击复习一,用我们提供的资料中的知识点梳理,这部分是我们培训班内部的核心资料,是严格按照最新指定教材和大纲总结出的知识框架,条例清晰,知识点全面、通俗易背、利于全面把握知识点,这样你完全可以不要看教材了,直接背这些重点就可以了。二,背完这些知识点,做几套历年真题,为考试做好充分准备,这部分我们也提供了。三,树立必胜信心,自考掌握了以上,通过基本没有问题了!四,考前必看我们的快速提分技巧,短时间提高5-10分。你可以先试看下我们资料样本,预览了解下,需要购买直接联系咨询我!把握好本站提供的资料,绝对可通过各科考试,考试轻松过关!2016年成人高考(专升本)高等数学二(第一章样本,完整版共14页)严格依据大纲编写:笔记目录第一章极限和连续第一节极限[复习考试要求]1.了解极限的概念(对极限定义等形式的描述不作要求)。会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。2.了解极限的有关性质,掌握极限的四则运算法则。3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。会运用等价无穷小量代换求极限。4.熟练掌握用两个重要极限求极限的方法。[主要知识内容](一)数列的极限1.数列定义按一定顺序排列的无穷多个数称为无穷数列,简称数列,记作{xn},数列中每一个数称为数列的项,第n项xn为数列的一般项或通项,例如(1)1,3,5,…,(2n-1),…(等差数列)(2)(等比数列)(3)(递增数列)(4)1,0,1,0,…,…(震荡数列)都是数列。它们的一般项分别为(2n-1),。对于每一个正整数n,都有一个xn与之对应,所以说数列{xn}可看作自变量n的函数xn=f(n),它的定义域是全体正整数,当自变量n依次取1,2,3…一切正整数时,对应的函数值就排列成数列。在几何上,数列{xn}可看作数轴上的一个动点,它依次取数轴上的点x1,x2,x3,...xn,…。2.数列的极限定义对于数列{xn},如果当n→∞时,xn无限地趋于一个确定的常数A,则称当n趋于无穷大时,数列{xn}以常数A为极限,或称数列收敛于A,记作比如:无限的趋向0,无限的趋向1否则,对于数列{xn},如果当n→∞时,xn不是无限地趋于一个确定的常数,称数列{xn}没有极限,如果数列没有极限,就称数列是发散的。比如:1,3,5,…,(2n-1),…1,0,1,0,…数列极限的几何意义:将常数A及数列的项依次用数轴上...