1例例11.12,12232121xxxx求解二元线性方程组解解1223D)4(37112121D,14121232D,21DDx11,2714DDx22.3721,02243122421D计算三阶行列式例例22解解按对角线法则,有D4)2()4()3(12)2(21)3(2)4()2()2(241124843264.143.094321112xx求解方程例例33解解方程左端1229184322xxxxD,652xx解得由0652xx3.2xx或4例例44解线性方程组.0,132,22321321321xxxxxxxxx解解111312121D5,01103111221D,51013121212D,1050111122213D,5故方程组的解为:,111DDx,222DDx.133DDx111312121D,51103111221D,51013121212D,106例例55使求一个二次多项式),(xf.28)3(,3)2(,0)1(fff解解设所求的二次多项式为,)(2cbxaxxf由题意得2839)3(324)2(0)1(cbafcbafcbaf,020D.20,60,40321DDD得,21DDa,32DDb13DDc故所求多项式为.132)(2xxxf7三、三、n阶行列阶行列式式333231232221131211aaaaaaaaaD322113312312332211aaaaaaaaa332112322311312213aaaaaaaaa(1)三阶行列式共有3!=6项.(2)每项都是位于不同行不同列的三个元素的乘积.(3)每项的正负号都取决于位于不同行不同列的三个元素的下标排列.例如322113aaa列标排列312是偶排列,正号322311aaa,负号列标排列132是奇排列,行标成自然序排列8.)1(321321321321)(ppppppppptaaa333231232221131211aaaaaaaaaD322113312312332211aaaaaaaaa332112322311312213aaaaaaaaa9nnnnnnaaaaaaaaaD212222111211定义用n2个元素aij(i,j=1,2,…,n)组成的记号定义为,)1(21212121)(nnnnppppppppptaaa).det(ija简记作determinant为这个排列的逆序数.的一个排列,,,,为自然数其中)(212121nnppptnppp阶行列式是项的代数和,n!n不同列的个元素的乘积.n每项都是位于不同行、10例3设,1211123111211)(xxxxxf.3的系数求x含的项有两项,即3x解43342211)1243()1(aaaat44332211)1234()1(aaaat3x32x.13的系数为故x,3x112、利用行列式性质计算行列式例1证明3332...