合肥陪伴式提分教育领先品牌21.4二次函数的应用一、选择题(共2题)1.已知原点是抛物线y=(m+1)x2的最高点,则m的取值范围是()A.m<-1B.m<1C.m>-1D.m>-22.某旅店有100张床位,每床每晚收费10元时,床位可全部租出.若每床每晚收费每提高2元,则租出的床位减少10张.以每次提高2元的这种方法变化下去,该旅店为投资最少而获利最大,每床每晚收费应提高()A.4元或6元B.4元C.6元D.8元二、填空题(共2题)3.每年六、七月份某市荔枝大量上市,今年某水果商以5元/kg的价格购进一批荔枝进行销售,运输过程中质量损耗5%,运输费用是0.7元/kg,假设不计其他费用.(1)水果商要把荔枝售价至少定为才不会亏本;(2)在销售过程中,水果商发现每天荔枝的销售量m(kg)与销售单价x(元/kg)之间满足关系:m=-10x+120,那么当销售单价定为时,每天获得的利润w最大.4.出售某种手工艺品,若每个获利x元,一天可售出(8-x)个,则当x=时,一天出售该种手工艺品的总利润y最大.三、计算与解答题(共6题)5①.图是泰州某河上一座古拱桥的截面图,拱桥桥洞上沿是抛物线形状,抛物线两端点与水面的距离都是1m,拱桥的跨度为10m,桥洞与水面的最大距离是5m,桥洞两侧壁上各有一盏距离水面4m的景观灯.若把拱桥的截面图放在平面直角坐标系中(如图②).(1)求抛物线的解析式;(2)求两盏景观灯之间的水平距离.6.跳绳时,绳甩到最高处时的形状是抛物线.正在甩绳的甲、乙两名同学拿绳的手间距AB为6米,到地面的距离AO和BD均为0.9米,身高为1.4米的小丽站在距点O的水平距离为1米的点F处,绳子甩到最高处时刚好通过她的头顶点E.以点O为原点建立如图所示的平面直角坐标系,设此抛物线的解析式为y=ax2+bx+0.9.(1)求该抛物线的解析式;(2)如果小华站在OD之间,且离点O的距离为3米,当绳子甩到最高处时刚好通过他的头顶,请你算出小华的身高;合肥陪伴式提分教育领先品牌(3)如果身高为1.4米的小丽站在OD之间,且离点O的距离为t米,绳子甩到最高处时超过她的头顶,请结合图象,求t的取值范围.7.在NBA篮球大赛中,一位运动员在距篮下4m处跳起投篮,球运行的路线是抛物线,当球运行的水平距离是2.5m时,达到最大高度3.5m,然后准确落入篮圈.已知篮圈中心到地面的距离为3.05m.(1)建立如下图所示的平面直角坐标系,求抛物线的解析式;(2)该运动员身高1.8m,在这次跳投中,球在头顶上方0.25m处出手,问球出手时,他距离地面的高度是多少?8.如图所示,一单杠高2.2m,两立柱间的距离为1.6m,将一根绳子的两端拴于立柱...