合肥陪伴式提分教育领先品牌1.3有理数的大小精题讲解1.利用数轴进行有理数的大小比较(1)数轴上不同的两个点表示的数,右边点表示的数总比左边点表示的数大.(2)正数大于零,零大于负数,正数大于负数.(3)因为正数都大于0,反过来,大于0的数都是正数,所以可以用a>0表示a是正数;反之,a是正数也可以表示为a>0.同理,a<0表示a是负数;反之,a是负数也可以表示为a<0.另外可以用a≥0表示a是非负数,用a≤0表示a是非正数.谈重点利用数轴判断正数的大小(1)利用数轴比较两个正数的大小,离原点越远,表示的数就越大,离原点越近,表示的数就越小.(2)利用数轴比较两个负数的大小,离原点越近,表示的数就越大,离原点越远,表示的数就越小.【例1-1】有理数a,b在数轴上的位置如图所示,试用“=”“>”或“<”填空:a________0,b________0,a________b.解析:a在原点的左边,是负数,负数小于0;b在原点的右边,是正数,正数大于0;数b的对应点在数a的对应点的右边,数轴上右边的数总是大于左边的数.答案:<><【例1-2】比较下列各数的大小:(1)-|-1|__________-(-1);(2)-(-3)__________0;(3)-(-|-3.4|)________-(+|3.4|).解析:(1)化简-|-1|=-1,-(-1)=1,因为负数小于正数,所以-|-1|<-(-1);(2)化简-(-3)=3,因为正数都大于0,所以-(-3)>0;(3)同时化简两数,得-(-|-3.4|)=3.4,-(+|3.4|)=-3.4,所以-(-|-3.4|)>-(+|3.4|).在比较大小时,有时可能出现含有负数的绝对值或负数的相反数的形式给出的数,这种形式给出的数不容易直接观察出大小,我们要先化简,然后再选择适当的方法进行大小比较.答案:(1)<(2)>(3)>(4)>2.两个负数的大小比较(1)利用绝对值比较两个负数的大小的法则两个负数比较大小,绝对值大的反而小,即在数轴上绝对值较大的负数一定在绝对值较小的负数的左边.例如:|-3|=3,|-5|=5,而3<5,所以-3>-5.(2)利用绝对值比较两个负数大小的步骤①分别求出两个负数的绝对值;②比较两个绝对值的大小;③根据“两个负数,绝对值大的反而小”作出正确的判断.解技巧正确比较两个分数的大小在比较两个分数大小时,一般不要改变两数原来的顺序,以免最后判断时失误.例如比较-与-的大小时,先求得-的绝对值是,-的绝对值是,然后比较与的大小得>,从而-<-,在整个解答过程中,-与-的顺序不变.【例2】比较-与-的大小.分析:两个负数比较大小,要先...