医学统计学1、应用相对数时应注意的事项①计算相对数时分母不能太小;②分析时不能以构成比代替率;③当各分组的观察单位数不等时,总率(平均率)的计算不能直接将各分组的率相加求其平均;④对比时应注意资料的可比性:两个率要在相同的条件下进行,即要求研究方法相同、研究对象同质、观察时间相等以及地区、民族、年龄、性别等客观条件一致,其他影响因素在各组的内部构成应相近;⑤进行假设检验时,要遵循随机抽样原则,以进行差别的显著性检验。2、正态分布的特点及其应用性质:①两头低中间高,略呈钟形;②只有一个高峰,在X=μ,总体中位数亦为μ;③以均数为中心,左右对称;④μ为位置参数,当σ恒定时,μ越大,曲线沿横轴越向右移动;σ为变异度参数,当μ恒定时,σ越大,表示数据越分散,曲线越矮胖,反之,曲线越瘦高;⑤对于任何服从正态分布N(μ,σ2)的随机变量X作的线性变换,都会变换成u服从于均数为0,方差为1的正态分布,即标准正态分布。应用:①概括估计变量值的频数分布;②制定参考值范围;③质量控制;④是许多统计方法的理论基础。3、确定参考值范围的一般原则和步骤、方法一般原则和步骤:①抽取足够例数的正常人样本作为观察对象;②对选定的正常人进行准确而统一的测定,以控制系统误差;③判断是否需要分组测定;④决定取单侧范围值还是双侧范围值;⑤选定适当的百分范围;⑥选用适当的计算方法来确定或估计界值。方法:①正态分布法:②百分位数法(偏态分布)4、总体均数的可信区间与参考值范围的区别概念:可信区间是按预先给定的概率来确定的未知参数μ的可能范围。参考值范围是绝大多数正常人的某指标范围。所谓正常人,是指排除了影响所研究指标的疾病和有关因素的人;所谓绝大多数,是指范围,习惯上指正常人的95%。计算公式:可信区间①②③参考值范围①正态分布②偏态分布用途:可信区间用于总体均数的区间估计参考值范围用于表示绝大多数观察对象某项指标的分布范围5、标准差与标准误的区别与联系区别:含义:标准差反映观察值在个体中的变异大小,标准差越大,变量值越分散;标准误是指样本统计量的标准差,反映来自同一总体的样本统计量的离散程度以及样本统计量与总体参数的差异程度,即抽样误差的大小。计算方法:标准差:总体标准差:样本标准差:标准误:均数的标准误:率的标准误:用途:标准差①用于对称分布,特别是正态分布资料,表示观察值分布的离散程度②结合均数,描述正态分布的特征...