第五章作业选讲A组6(13)、lntansincosxdxxx222lntanlntansincostancoslntansectanlntantantanlntanlntan1lntan2xxdxdxxxxxxxdxxxdxxxdxxC6(18)、4cosxdx22242cos21cos22cos21coscos24cos412cos21cos44cos23248cos4cos23828cos4cos23423248sin4sin233248xxxxdxxdxdxdxxxxxdxdxxxdxdxdxxxdxdxdxxxxC6(20)、4tanxdx4222222222222223tantantantansec1tansectantantantantantansec1tantansectantantantantan3xdxxxdxxxdxxxdxxdxxdxxdxxdxxdxxdxxdxdxxdxdxdxxxxC7(2)、32xdxxx令6tx,则553254321166111166111616.....1xttdxdxdxttxxtdxdxttttttdxdxt最后要回代7(6)、211ln11xdxxx令11xtx,则212,11txdxdttt,2221111lnln1111112ln221111ln21lnln21ln......4xxdxdxxxxxxtdttttttdtttdttC记得回代!,7(8)、22ln11+xxdxx令21txx,则22222111111,2,,221ttxxtxxdxdtttttxx22222232ln11+ln1212ln2lnlnln......3xxdxxttdtttttdttdttCt回代!7(12)、2211dxxx令1tx,则21dxdtt2222222221?0111?11tdxdtttdtwhyttttxxtt类似的问题还出现在第16题!正确的解法必须分情况讨论。实际上用三角变化可能更简单。令tan,,00,22xtt,则222222211sec1tantan1cossinsinsin1.......sindxtdtxxtttdttdttCt回代!7(16)、4211dxxx令tan,,00,22xtt,则24242342424322311sec1tantan1cossincossinsin1sinsinsin1111113sinsin3dxtdtxxtttdtttdtttdttxxCCtxxx也可以用“倒数变换”,但由于涉及开方,一定要注意分情况。1、当x>0时。令1tx,则21dxdtt42422242232222222222232223221111111122111111111112211111311311tdttttttdtdtdtttttd...