第2讲空间点、线、面之间的位置关系一、填空题1.若空间三条直线a,b,c满足a⊥b,b⊥c,则直线a与c的位置关系是________.解析当a,b,c共面时,a∥c;当a,b,c不共面时,a与c可能异面也可能相交.答案相交、平行或异面2.(2017·苏州期末)已知直线a和平面α,β,α∩β=l,a⊄α,a⊄β,且a在α,β内的射影分别为直线b和c,则直线b和c的位置关系是________.解析依题意,直线b和c的位置关系可能是相交、平行或异面.答案相交、平行或异面3.平面α,β相交,在α,β内各取两点,这四点都不在交线上,这四点能确定________个平面.解析若过四点中任意两点的连线与另外两点的连线相交或平行,则确定一个平面;否则确定四个平面.答案1或44.如果两条异面直线称为“一对”,那么在正方体的十二条棱中共有异面直线________对.解析如图所示,与AB异面的直线有B1C1,CC1,A1D1,DD1四条,因为各棱具有不同的位置,且正方体共有12条棱,排除两棱的重复计算,共有异面直线=24(对)答案245.(2017·哈尔滨一模)如图,在四棱锥P-ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB和△PAD都是等边三角形,则异面直线CD与PB所成角的大小为________.解析如图,过点B作直线BE∥CD,交DA的延长线于点E,连接PE.∴∠PBE(或其补角)是异面直线CD与PB所成角. △PAB和△PAD都是等边三角形,∴∠PAD=60°,DA=PA=AB=PB=AE,∴∠PAE=120°.设PA=AB=PB=AE=a,则PE=a.又∠ABC=∠BAD=90°,∴∠BAE=90°,∴BE=a,∴在△PBE中,PB2+BE2=PE2,∴∠PBE=90°.即异面直线CD与PB所成角为90°.答案90°6.如图,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,则直线EF与正方体的六个面所在的平面相交的平面个数为________.解析取CD的中点H,连接EH,FH.在正四面体CDEF中,由于CD⊥EH,CD⊥HF,所以CD⊥平面EFH,所以AB⊥平面EFH,则平面EFH与正方体的左右两侧面平行,则EF也与之平行,与其余四个平面相交.答案47.(2017·苏北四市期末)如图,在正方体ABCD-A1B1C1D1中,M,N分别为棱C1D1,C1C的中点,给出以下四个结论:①直线AM与CC1是相交直线;②直线AM与BN是平行直线;③直线BN与MB1是异面直线;④直线AM与DD1是异面直线.其中正确的结论为________(填序号).解析A,M,C1三点共面,且在平面AD1C1B中,但C∉平面AD1C1B,C1∉AM,因此直线AM与CC1是异面直线,同理AM与BN也是异面直线,AM与DD1也是异面直线,①②错,④正确;M,B,B1三点...