专题05平面解析几何1.【2019年高考全国Ⅰ卷理数】已知椭圆C的焦点为,过F2的直线与C交于A,B两点.若,,则C的方程为A.B.C.D.2.【2019年高考全国Ⅱ卷理数】若抛物线y2=2px(p>0)的焦点是椭圆的一个焦点,则p=A.2B.3C.4D.83.【2019年高考全国Ⅱ卷理数】设F为双曲线C:的右焦点,为坐标原点,以为直径的圆与圆交于P,Q两点.若,则C的离心率为A.B.C.2D.4.【2019年高考全国Ⅲ卷理数】双曲线C:=1的右焦点为F,点P在C的一条渐近线上,O为坐标原点,若,则△PFO的面积为A.B.C.D.5.【2019年高考北京卷理数】已知椭圆(a>b>0)的离心率为,则A.a2=2b2B.3a2=4b2C.a=2bD.3a=4b6.【2019年高考北京卷理数】数学中有许多形状优美、寓意美好的曲线,曲线C:就是其中之一(如图).给出下列三个结论:①曲线C恰好经过6个整点(即横、纵坐标均为整数的点);②曲线C上任意一点到原点的距离都不超过;③曲线C所围成的“心形”区域的面积小于3.其中,所有正确结论的序号是A.①B.②C.①②D.①②③7.【2019年高考天津卷理数】已知抛物线的焦点为,准线为,若与双曲线的两条渐近线分别交于点和点,且(为原点),则双曲线的离心率为A.B.C.D.8.【2019年高考浙江卷】渐近线方程为x±y=0的双曲线的离心率是A.B.1C.D.29.【2019年高考浙江卷】已知圆的圆心坐标是,半径长是.若直线与圆C相切于点,则=___________,=___________.10.【2019年高考浙江卷】已知椭圆的左焦点为,点在椭圆上且在轴的上方,若线段的中点在以原点为圆心,为半径的圆上,则直线的斜率是___________.11.【2019年高考全国Ⅲ卷理数】设为椭圆C:的两个焦点,M为C上一点且在第一象限.若为等腰三角形,则M的坐标为___________.12.【2019年高考全国Ⅰ卷理数】已知双曲线C:的左、右焦点分别为F1,F2,过F1的直线与C的两条渐近线分别交于A,B两点.若,,则C的离心率为____________.13.【2019年高考江苏卷】在平面直角坐标系中,若双曲线经过点(3,4),则该双曲线的渐近线方程是▲.14.【2019年高考江苏卷】在平面直角坐标系中,P是曲线上的一个动点,则点P到直线x+y=0的距离的最小值是▲.15.【2019年高考全国Ⅰ卷理数】已知抛物线C:y2=3x的焦点为F,斜率为32的直线l与C的交点为A,B,与x轴的交点为P.(1)若|AF|+|BF|=4,求l的方程;(2)若3APPB�,求|AB|.16.【2019年高考全国Ⅱ卷理数】已知点A(−2,0),B(2,0),动点M(x,y)满足直线AM与BM的...