第2课时导数与方程题型一求函数零点个数例1设函数f(x)=x2-mlnx,g(x)=x2-(m+1)x,当m≥1时,讨论f(x)与g(x)图象的交点个数.解令F(x)=f(x)-g(x)=-x2+(m+1)x-mlnx,x>0,问题等价于求函数F(x)的零点个数.F′(x)=-,当m=1时,F′(x)≤0,函数F(x)为减函数,注意到F(1)=>0,F(4)=-ln4<0,所以F(x)有唯一零点.当m>1时,若0m,则F′(x)<0;若10,所以函数F(x)在(0,1)和(m,+∞)上单调递减,在(1,m)上单调递增,注意到F(1)=m+>0,F(2m+2)=-mln(2m+2)<0,所以F(x)有唯一零点.综上,函数F(x)有唯一零点,即两函数图象总有一个交点.思维升华(1)可以通过构造函数,将两曲线的交点问题转化为函数零点问题.(2)研究方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等,并借助函数的大致图象判断方程根的情况.跟踪训练1设函数f(x)=lnx+,m∈R.(1)当m=e(e为自然对数的底数)时,求f(x)的极小值;(2)讨论函数g(x)=f′(x)-的零点的个数.解(1)由题设,当m=e时,f(x)=lnx+,则f′(x)=(x>0),由f′(x)=0,得x=e.∴当x∈(0,e)时,f′(x)<0,f(x)在(0,e)上单调递减,当x∈(e,+∞)时,f′(x)>0,f(x)在(e,+∞)上单调递增,∴当x=e时,f(x)取得极小值f(e)=lne+=2,∴f(x)的极小值为2.(2)由题设g(x)=f′(x)-=--(x>0),令g(x)=0,得m=-x3+x(x>0).设φ(x)=-x3+x(x≥0),则φ′(x)=-x2+1=-(x-1)(x+1),当x∈(0,1)时,φ′(x)>0,φ(x)在(0,1)上单调递增;当x∈(1,+∞)时,φ′(x)<0,φ(x)在(1,+∞)上单调递减.∴x=1是φ(x)的唯一极值点,且是极大值点,因此x=1也是φ(x)的最大值点,∴φ(x)的最大值为φ(1)=.又φ(0)=0,结合y=φ(x)的图象(如图),可知①当m>时,函数g(x)无零点;②当m=时,函数g(x)有且只有一个零点;③当0时,函数g(x)无零点;当m=或m≤0时,函数g(x)有且只有一个零点;当00,当a≤0时,f′(x)>0,函数f(x)的增区间为(0,+∞);当a>0时,f′(x)=,令f′(x...