2008年全国硕士研究生入学统一考试数学二试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)设,则的零点个数为()01.23(2)曲线方程为函数在区间上有连续导数,则定积分()曲边梯形ABOD面积.梯形ABOD面积.曲边三角形面积.三角形面积.(3)在下列微分方程中,以(为任意常数)为通解的是()(5)设函数在内单调有界,为数列,下列命题正确的是()若收敛,则收敛.若单调,则收敛.若收敛,则收敛.若单调,则收敛.(6)设函数连续,若,其中区域为图中阴影部分,则(7)设为阶非零矩阵,为阶单位矩阵.若,则()1不可逆,不可逆.不可逆,可逆.可逆,可逆.可逆,不可逆.(8)设,则在实数域上与合同的矩阵为()....二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(9)已知函数连续,且,则.(10)微分方程的通解是.(11)曲线在点处的切线方程为.(12)曲线的拐点坐标为______.(13)设,则.(14)设3阶矩阵的特征值为.若行列式,则.三、解答题:15-23题,共94分.请将解答写在答题纸指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分9分)求极限.(16)(本题满分10分)设函数由参数方程确定,其中是初值问题的解.求.2(17)(本题满分9分)求积分.(18)(本题满分11分)求二重积分其中(19)(本题满分11分)设是区间上具有连续导数的单调增加函数,且.对任意的,直线,曲线以及轴所围成的曲边梯形绕轴旋转一周生成一旋转体.若该旋转体的侧面积在数值上等于其体积的2倍,求函数的表达式.(20)(本题满分11分)(1)证明积分中值定理:若函数在闭区间上连续,则至少存在一点,使得(2)若函数具有二阶导数,且满足,证明至少存在一点(21)(本题满分11分)求函数在约束条件和下的最大值与最小值.(22)(本题满分12分)设矩阵,现矩阵满足方程,其中,,(1)求证;(2)为何值,方程组有唯一解,并求;(3)为何值,方程组有无穷多解,并求通解.(23)(本题满分10分)3设为3阶矩阵,为的分别属于特征值特征向量,向量满足,(1)证明线性无关;(2)令,求.4567891011121314