28.1锐角三角函数第2课时余弦函数和正切函数1.理解余弦、正切的概念;(重点)2.熟练运用锐角三角函数的概念进行有关计算.(重点)一、情境导入教师提问:我们是怎样定义直角三角形中一个锐角的正弦的?为什么可以这样定义?学生回答后教师提出新问题:在上一节课中我们知道,如图所示,在Rt△ABC中,∠C=90°,当锐角∠A确定时,∠A的对边与斜边的比就随之确定了.现在我们要问:其他边之间的比是否也确定了呢?为什么?二、合作探究探究点一:余弦函数和正切函数的定义【类型一】利用余弦的定义求三角函数值在Rt△ABC中,∠C=90°,AB=13,AC=12,则cosA=()A.B.C.D.解析: Rt△ABC中,∠C=90°,AB=13,AC=12,∴cosA==.故选C.方法总结:在直角三角形中,锐角的余弦等于这个角的邻边与斜边的比值.变式训练:见《学练优》本课时练习“课堂达标训练”第2题【类型二】利用正切的定义求三角函数值如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tanA=()A.B.C.D.解析:在直角△ABC中, ∠ABC=90°,∴tanA==.故选D.方法总结:在直角三角形中,锐角的正切等于它的对边与邻边的比值.变式训练:见《学练优》本课时练习“课堂达标训练”第5题探究点二:三角函数的增减性第1页共3页【类型一】判断三角形函数的增减性随着锐角α的增大,cosα的值()A.增大B.减小C.不变D.不确定解析:当角度在0°~90°之间变化时,余弦值随着角度的增大而减小,故选B.方法总结:当0°<α<90°时,cosα的值随着角度的增大(或减小)而减小(或增大).【类型二】比较三角函数的大小sin70°,cos70°,tan70°的大小关系是()A.tan70°<cos70°<sin70°B.cos70°<tan70°<sin70°C.sin70°<cos70°<tan70°D.cos70°<sin70°<tan70°解析:根据锐角三角函数的概念,知sin70°<1,cos70°<1,tan70°>1.又 cos70°=sin20°,正弦值随着角的增大而增大,∴sin70°>cos70°=sin20°.故选D.方法总结:当角度在0°≤∠A≤90°之间变化时,0≤sinA≤1,0≤cosA≤1,tanA≥0.探究点三:求三角函数值【类型一】三角函数与圆的综合如图所示,△ABC内接于⊙O,AB是⊙O的直径,点D在⊙O上,过点C的切线交AD的延长线于点E,且AE⊥CE,连接CD.(1)求证:DC=BC;(2)若AB=5,AC=4,求tan∠DCE的值.解析:(1)连接OC,求证DC=BC可以先证明∠CAD=∠BAC,进而证明DC=BC;(2)由AB=5,AC=4,可根据勾股定理得到BC=3,易证△...