第2课时等腰(边)三角形的判定【知识与技能】探索等腰三角形的判定定理.【过程与方法】理解等腰三角形的判定定理,并会运用其进行简单的证明.【情感态度】通过探索一个三角形是等腰三角形的条件,培养学生的探索能力.【教学重点】理解等腰三角形的判定定理.【教学难点】理解等腰三角形的判定定理,并会运用其进行简单的证明.一、情景导入,初步认知如图,位于海上B、C两处的两艘救生船接到A处遇险船只的报警,当时测得∠B=∠C,如果这两艘救生船以同样的速度同时出发,能不能同时赶到出事地点(不考虑风浪因素)?在一般的三角形中,如果有两个角相等,那么它们所对的边是什么关系?【教学说明】由现实中的实际问题入手,设置问题情境,导入本课的主题,为学生提供参与活动的时间和空间,调动学生的主观能动性.二、思考探究,获取新知1.探究:如图,在△ABC中,如果∠B=∠C,那么AB与AC之间有什么关系吗?你能用什么方法得出你的结论?请相互交流,归纳、总结.【归纳结论】有两个角相等的三角形是等腰三角形(简称“等角对等边”).【教学说明】培养学生的动手能力,探究归纳得出等腰三角形的判定定理.2.动脑筋:有一个角是60°的等腰三角形是等边三角形吗?为什么?【教学说明】引导学生证明.【归纳结论】有一个角是60°的等腰三角形是等边三角形.三、运用新知,深化理解1.教材P64例2、P65例3.2.如图,在△ABC中,AB=AC,∠A=36,BD,CE分别是△ABC、△BCD的角平分线,则图中等腰三角形有(A)A.5个B.4个C.3个D.2个3.如图,AD是△ABC的边BC上的高,由下列条件中的某一个就能推出△ABC是等腰三角形的是.答案:∠BAD=∠CAD或∠ABD=∠ACD4.在△ABC中,∠B=40°,∠C=70°,则△ABC中是三角形.答案:等腰5.已知,如图,等腰△ABC,AB=AC:(1)若AB=BC,则△ABC为等边三角形;(2)若∠A=60°,则△ABC为等边三角形;(3)若∠B=60°,则△ABC为等边三角形.第5题图第6题图6.如图,已知△ABC是等边三角形,AD∥BC,CD⊥AD,垂足为D,E为AC的中点,AD=DE=6cm则∠ACD=()°,AC=cm,∠DAC=()°,△ADE是三角形.答案:301260等边7.如图,△ABC中,BD⊥AC于D,CE⊥AB于E,BD=CE.求证:△ABC是等腰三角形.证明: S△ABC=12(AB·CE)=12(AC·BD)且BD=CE∴AB=AC∴△ABC是等腰三角形.8.如图,在△ABC中,AB=AC,D为BC边上一点,∠B=30°,∠DAB=45°.(1)求∠DAC的度数;(2)求证:DC=AB.解:(1) AB=AC∴∠B=∠C=30° ∠C+∠BAC+∠B=180°∴∠BAC=180°-30°-...