www.youyi100.com第1页共4页3.2一元一次方程的应用第1课时等积变形和行程问题1.会用一元一次方程解决等积变形和行程问题;(重点、难点)2.通过对“变化中的不变量”的分析提高分析问题、解决问题的能力.一、情境导入一种牙膏出口处直径为5mm,子昂每次刷牙都挤出1cm长的牙膏,这样一支牙膏可以用36次.该品牌牙膏现推出新包装,只是将出口处直径改为6mm,子昂还是按习惯每次挤出1cm的牙膏,这样,这支牙膏能用多少次呢?二、合作探究探究点一:等积变形问题用直径为90mm的圆钢,铸造一个底面长和宽都是131mm,高度是81mm的长方体钢锭.问需要截取多长的一段圆钢?(结果保留π)解析:圆钢由圆柱体变为长方体,形状变了,但体积不变.解:设截取圆钢的长度为xmm.根据题意,得πx=131×131×81,解方程,得x=.答:截取圆钢的长度为mm.方法总结:列方程解应用题首先要审题,本题中圆钢由圆柱体变成了长方体,形状发生了变化,但是体积保持不变.“变形之前圆钢的体积=变形之后长方体的体积”.将一个长、宽、高分别为15cm、12cm和8cm的长方体钢坯锻造成一个底面是边长为12cm的正方形的长方体钢坯.试问:是锻造前的长方体钢坯的表面积大,还是锻造后的长方体钢坯的表面积大?请你计算比较.解析:由锻造前后两长方体钢坯体积相等,可求出锻造后长方体钢坯的高.再计算锻造前后两长方体钢坯的表面积,最后比较大小即可.解:设锻造后长方体的高为xcm,依题意,得15×12×8=12×12x.解得x=10.锻造前长方体钢坯的表面积为2×(15×12+15×8+12×8)=2×(180+120+96)=792(cm2),锻造后长方体钢坯的表面积为2×(12×12+12×10+12×10)=2×(144+120+120)=768(cm2).因为792>768,所以锻造前的长方体钢坯的表面积较大.方法总结:本题的解题关键是根据等积变形中的等量关系确定变化后长方体的高.探究点二:行程问题【类型一】相遇问题小明家离学校2.9千米,一天小明放学走了5分钟之后,他爸爸开始从家出发骑自行车去接小明,已知小明每分钟走60米,爸爸骑自行车每分钟骑200米,请问小明爸爸从家出发几分钟后接到小明?解析:本题等量关系:小明所走的路程+爸爸所走的路程=全部路程,但要注意小明比爸爸多走了5分钟,另外也要注意本题单位的统一.解:设小明爸爸出发x分钟后接到小明,如图所示,由题意,得200x+60(x+5)=2900.解得x=10.答:小明爸爸从家出发10分钟后接到小明.方法总结:找出问题中的等量关系是列方程解应用题的关键,...