浙教版·九年级下册学习目标巩固解直角三角形相关知识.能从实际问题中构造直角三角形,从而把实际问题转化为解直角三角形的问题,并能灵活选择三角函数解决问题.复习回顾在直角三角形中,除直角外,由已知两元素(必有一边)求其余未知元素的过程叫解直角三角形.1.解直角三角形(1)三边之间的关系:a2+b2=c2(勾股定理);2.解直角三角形的依据(2)两锐角之间的关系:∠A+∠B=90º;(3)边角之间的关系:sinA=accosA=ACBabcbctanA=ab典例解析例12012年6月18日,“神州”九号载人航天飞船与“天宫”一号目标飞行器成功实现交会对接。“神州”九号与“天宫”一号的组合体在离地球表面343km的圆形轨道上运行。如图,当组合体运行到离地球表面P点的正上方时,从中能直接看到的地球表面最远的点在什么位置?最远点与P点的距离是多少(地球半径约为6400km,结果取整数)?3.142取,OFPQFQ是☉O的切线,∠FQO为直角。最远点PQ求的长,要先求∠POQ的度数OFPQ解:设∠POQ=α, FQ是☉O的切线,∴△FOQ是直角三角形。6400cos0.9491,6400343OQOF 18.36∴。PQ∴的长为18.3618.363.142640064002051(km)180180。典例解析利用解直角三角形解决实际问题的一般过程:1.将实际问题抽象为数学问题;2.根据条件的特点,适当选用锐角三角函数去解直角三角形;画出平面图形,转化为解直角三角形的问题3.得到数学问题的答案;4.得到实际问题的答案.归纳:知识精讲例2如图,秋千链子的长度为3m,静止时的秋千踏板(大小忽略不计)距地面0.5m.秋千向两边摆动时,若最大摆角(摆角指秋千链子与铅垂线的夹角)约为60°,则秋千踏板与地面的最大距离为多少?0.5m3m60°典例解析0.5m3mABCDE60°分析:根据题意,可知秋千踏板与地面的最大距离为CE的长度.因此,本题可抽象为:已知:DE=0.5m,AD=AB=3m,∠DAB=60°,△ACB为直角三角形,求CE的长度.典例解析解: ∠CAB=60°,AD=AB=3m,3mABDE60°C∴AC=ABcos∠CAB=1.5m,∴CD=AD-AC=1.5m,∴CE=AD+DE=2.0m.即秋千踏板与地面的最大距离为2.0m.典例解析1.课外活动小组测量学校旗杆的高度.当太阳光线与地面成30°角时,测得旗杆在地面上的影长为24米,那么旗杆的高度约是()A.12米B.米C.24米D.米83243B达标检测2.一次台风将一棵大树刮断,经测量,大树刮断一端的着地点A到树根部C的距离为4米,倒下部分AB与地平面AC的夹角为45°,则这棵大树高是米.(442)ACB4米45°达标检测3.如图...