2014年中考数学分类汇编——运动变化类的压轴题2014年运动变化类的压轴题,题目展示涉及:单一(双)动点在三角形、四边形上运动;在直线、抛物线上运动;几何图形整体运动问题.知识点涉及:全等三角形的判定与性质;特殊四边形形的判定和性质;圆的相关性质;解直角三角形,勾股定理,相似三角形的性质.数学思想涉及:分类讨论;数形结合;方程思想.解答这类问题的关键是正确分类画出直观图形.现选取部分省市的2014年中考题展示,以飨读者.一、单动点问题【题1】(2014年江苏徐州第28题)如图,矩形ABCD的边AB=3cm,AD=4cm,点E从点A出发,沿射线AD移动,以CE为直径作圆O,点F为圆O与射线BD的公共点,连接EF、CF,过点E作EG⊥EF,EG与圆O相交于点G,连接CG.(1)试说明四边形EFCG是矩形;(2)当圆O与射线BD相切时,点E停止移动,在点E移动的过程中,①矩形EFCG的面积是否存在最大值或最小值?若存在,求出这个最大值或最小值;若不存在,说明理由;②求点G移动路线的长.【考点】:圆的综合题;垂线段最短;直角三角形斜边上的中线;矩形的判定与性质;圆周角定理;切线的性质;相似三角形的判定与性质.【专题】:压轴题;运动变化型.【分析】:(1)只要证到三个内角等于90°即可.(2)易证点D在⊙O上,根据圆周角定理可得∠FCE=∠FDE,从而证到△CFE∽△DAB,根据相似三角形的性质可得到S矩形ABCD=2S△CFE=.然后只需求出CF的范围就可求出S矩形ABCD的范围.根据圆周角定理和矩形的性质可证到∠GDC=∠FDE=定值,从而得到点G的移动的路线是线段,只需找到点G的起点与终点,求出该线段的长度即可.【解答】:解:(1)证明:如图1, CE为⊙O的直径,∴∠CFE=∠CGE=90°. EG⊥EF,∴∠FEG=90°.∴∠CFE=∠CGE=∠FEG=90°.∴四边形EFCG是矩形.(2)①存在.连接OD,如图2①, 四边形ABCD是矩形,∴∠A=∠ADC=90°. 点O是CE的中点,∴OD=OC.∴点D在⊙O上. ∠FCE=∠FDE,∠A=∠CFE=90°,∴△CFE∽△DAB.∴=()2. AD=4,AB=3,∴BD=5,S△CFE=()2•S△DAB=××3×4=.∴S矩形ABCD=2S△CFE=. 四边形EFCG是矩形,∴FC∥EG.∴∠FCE=∠CEG. ∠GDC=∠CEG,∠FCE=∠FDE,∴∠GDC=∠FDE. ∠FDE+∠CDB=90°,∴∠GDC+∠CDB=90°.∴∠GDB=90°Ⅰ.当点E在点A(E′)处时,点F在点B(F′)处,点G在点D(G′处,如图2①所示.此时,CF=CB=4.Ⅱ.当点F在点D(F″)处时,直径F″G″⊥BD,如图2②所示,此时⊙O与射线BD相切,CF=CD=3...