第3课时实际问题与二元一次方程组(3)【知识与技能】图文信息问题、行程问题、方案设计问题、其他问题.【过程与方法】先独立作业,再交流成果.【情感态度】加强应用能力训练,提高数学兴趣.【教学重点】行程问题、方案设计问题.【教学难点】分析题目中的两个等量关系.一、情境导入,初步认识问题1如图,长青化工厂与A,B两地有公路、铁路相连,这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地.已知公路运价为1.5元/(吨·千米),铁路运价为1.2元/(吨·千米),且这两次运输共支出公路运费15000元,铁路运费97200元.这批产品的销售款比原料费与运输费的和多多少元?解:设产品重x吨,原料重y吨,根据题意填表题目所求数值是______,为此需先解出_____与_____.由上表,列方程组解得因此,这批产品的销售款比原料费与运输费的和多_____元.问题2某电脑公司现有A,B,C三种型号的甲品牌电脑和D,E两种型号的乙品牌电脑.希望中学要从甲、乙两种品牌电脑中各选购一种型号的电脑.现知希望中学购买甲、乙两种品牌电脑共36台(价格如图所示),恰好用了10万元人民币,其中,甲品牌电脑为A型号电脑,求购买的A型号电脑有几台?解:选择A型号的电脑后,另外一种只能从D、E当中选,所以可分情况讨论.本题中存在的两个等量关系是(1)当选用方案(A,D)时,设购买A型号、D型号电脑分别为x台,y台.根据题意,得解得经检验,_______________.(2)当选用方案(A,E)时,设购买A型号、E型号电脑分别为x台,y台.根据题意,得解得经检验,_______________.答:希望中学购买了台A型号电脑.问题3(吉林中考)如图,在东北大秧歌的踩高跷表演中,已知演员身高是高跷长度的2倍,高跷与腿重合部分的长度是28cm,演员踩在高跷上时,头顶距离地面的高度为224cm,设演员的身高为xcm,高跷的长度为ycm,求x,y的值.解:本题存在两个等量关系:一是演员的身高是高跷长度的2倍;二是演员的身高与高跷和腿重合部分长度的差等于演员踩在高跷上时,头顶距离地面的高度与高跷的长度的差.设演员的身高为xcm,高跷的长度为ycm.根据题意得解得答:演员的身高为______cm,高跷的长度为______cm.【教学说明】在问题1中,要告知学生这种设未知数的方法叫“间接设法”.在问题2中,应用分类讨论思想,注意对求得的结果进行检验.在问题3中,要注意挖掘图中已知条件,找出等量关系.二、思考探究,获取新知思考行程问题的基本数量关系是什么?追及问题、相遇问题...