8.2消元——解二元一次方程组第1课时代入消元法一、新课导入1.导入课题:对于引言中的问题,我们在上节课通过设两个未知数(设胜x场,负y场),列出了二元一次方程组,并通过列表找公共解的办法得到了这个方程组的解显然这样的方法需要一个个尝试,有些麻烦,不好操作,所以这节课我们就来探究如何解二元一次方程组.(板书课题)2.学习目标:(1)会用代入消元法解简单的二元一次方程组.(2)知道解二元一次方程组的基本思想是“消元”,经历从未知向已知转化的过程,体会化归思想.3.学习重、难点:重点:会用代入法解简单的二元一次方程组,体会解二元一次方程组的思路是“消元”.难点:掌握代入消元法解二元一次方程组的一般步骤.二、分层学习1.自学指导:(1)自学内容:课本P91~P92例2之前的内容.(2)自学时间:8分钟.(3)自学要求:认真阅读课本,明确什么是消元?探讨用代入法解二元一次方程组的一般步骤.(4)自学参考提纲:①通过比较二元一次方程组与一元一次方程2x+(10-x)=16,得到了解二元一次方程组的方法,其具体过程可以表示如下:由方程①,得y=10-x.③把③代入②,得2x+(10-x)=16.解这个方程,得x=6.把x=6代入③,得y=4.所以这个方程组的解是在上面的解题过程中,把③代入②的目的是为了消去未知数y,这样就把二元一次方程组转化为我们熟悉的一元一次方程,这种将未知数的个数由多化少,逐一解决的思想,称为消元思想.②在上面的解题过程中,把③代入①可以吗?试试看.求y的值时,把求得的x=6代入①或代入②可不可以?哪种方式更简单?答案:可以,可以把x=6代入③更简单.③像上面这样,把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法.④对上面这个方程组是否有办法先消去未知数x,得到关于y的一元一次方程,进而求出原方程组的解?试试看.⑤小组合作完成P91例1的学习,并归纳出用代入法解二元一次方程组的一般步骤.2.自学:同学们可结合自学指导进行学习.3.助学:(1)师助生:①明了学情:教师深入课堂了解自学进度和自学中存在的问题:是否理解消元的思想,能否正确找到消元的途径(即是否能恰当选定一个方程,并把它变形,用含一个未知数的代数式表示出另一个未知数).②差异指导:对少数学有困难、学法不当的学生进行引导.(2)生助生:小组内的学生之间相互交流和帮助.4.强化:(1)消元...