28.2解直角三角形及其应用28.2.1解直角三角形第1课时解直角三角形【知识与技能】理解直角三角形中三条边及两个锐角之间的关系,能运用勾股定理、直角三角形的两锐角互余及锐角三角函数解直角三角形.【过程与方法】通过综合运用勾股定理及锐角三角函数等知识解直角三角形的过程,逐步培养学生分析问题、解决问题的能力.【情感态度】渗透数形结合思想,在解决问题过程中,感受成功的快乐,树立良好的学习习惯.【教学重点】运用直角三角形的边角关系解直角三角形.【教学难点】灵活运用锐角三角函数解直角三角形.一、情境导入,初步认识问题如图(1)所示的是意大利的比萨斜塔,设塔顶中心点为B,塔身中心线与垂直中心线的夹角为A,过B点向垂直中心线引垂线,垂足为C,如图(2),在Rt△ABC中,ZC=90,BC=5.2m,AB=54.5m,你能根据上述条件求出图(2)中∠A的度数(即塔身中心线与垂直中心线的夹角的度数)吗?与同伴相互交流.【教学说明】运用锐角三角函数来解决生活中趣味性问题的过程,可激发学生的学习兴趣,增强运用所学过知识解决问题的信心,教师适时予以点拨.二、思考探究,获取新知在上述问题中,我们已知直角三角形的一条直角边和斜边,利用锐角三角函数可求出它的锐角的度数,事实上,我们还可以借助直角三角形中两锐角互余,求出另一个锐角度数,也可以利用勾股定理得到另一条直角边.一般地,由直角三角形中除直角外的已知元素,求出其余未知元素的过程,叫做解直角三形思考(1)直角三角形中,除直角外的5个元素之间有哪些关系?(2)知道5个元素中的几个,就可以求出其余元素?【教学说明】学生相互交流获得结论,教师再与学生一道进行系统的总结,完善知识体系.如图,在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边分别为a,b,c,那么除直角C外的5个元素之间有如下关系:(1)三边之间的关系:a2+b2=c2(2)两锐角之间的关系:∠A+∠B=90°;(3)边角之间的关系:通过它们之间的关系,可以发现,知道其中的2个元素(至少有一条是边),就可以求出其他所有元素.三、典例精析,掌握新知例1如图,在Rt△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,且,解这个直角三角形.【分析】由首先联想到勾股定理可得,再利用知∠A=30°,从而∠B=60°.这是一例除直角外的两个已知元素都是边的情形,在求它的锐角度数时,有时必须借助计算器才行.例2如图,在Rt△ABC中,∠C=90°,∠B=40°,且b=20,解这个直角三角形(结果保留一位小数).【分析】本...