第二十六章反比例函数26.1反比例函数26.1.1反比例函数【知识与技能】1.理解反比例函数的意义.2.能够根据已知条件确定反比例函数的解析式.【过程与方法】经历从实际问题中抽象出反比例函数模型的过程中,体会反比例函数来源于生活实际,并确定其解析式.【情感态度】经历反比例函数的形成过程,体验函数是描述变量关系的重要数学模型,培养学生合作交流意识和探索能力.【教学重点】理解反比例函数的意义,确定反比例函数的解析式【教学难点】反比例函数解析式的确定.一、情境导入,初步认识问题京沪线铁路全程为1463km,乘坐某次列车所用时间t(单位:h)随该次列车平均速度v(单位:km/h)的变化而变化,速度v和时间t的对应关系可用怎样的函数式表示?【教学说明】教师提出问题,学生思考、交流,予以回答.教师应关注学生能否正确理解路程一定时,运行时间与运行速度两个变量之间的对应关系,能否正确列出函数关系式,对有困难的同学教师应及时予以指导.二、思考探究,获取新知问题1某住宅小区要种植一个面积为1000m2的长方形草坪,草坪的长为y(单位:m)随宽x(单位:m)的变化而变化,你能确定y与x之间的函数关系式吗?问题2已知北京市的总面积为1.68×104平方千米,人均占有的土地面积S(单位平方千米/人)随全市人口n(单位:人)的变化而变化,则S与n的关系式如何?说说你的理由.思考观察你列出的三个函数关系式,它们有何特征,不妨说说看看.【教学说明】学生相互交流,探寻三个问题中的三个函数关系式,教师再引导学生分析三个函数的特征,找出其共性,引入新知.反比例函数:形如y=(k≠0)的函数称为反比例函数,其中是自变量,y是的函数,自变量的取值范围是不等于0的一切实数.试一试下列问题中,变量间的对应关系,可用怎样的函数解析式表示?(1)一个游泳池的容积为2000m3,注满游泳池所用的时间t(单位:h)随注水速度v(单位:m3/h)的变化而变化;(2)某长方体的体积为1000cm3,长方体的高h(单位:cm)随底面积S(单位:cm2)的变化而变化.(3)—个物体重100牛,物体对地面的压强P随物体与地面的接触面积S的变化而变化.【教学说明】学生独立完成(1)、(2)、(3)题,教师巡视,关注学生完成情况,肯定他们的成绩,提出个别同学问题,帮助学生加深对构建反比例函数模型的理解.三、典例精析,掌握新知例1已知y是的反比例函数,当=2时,y=6.(1)写出y与之间的函数解析式;(2)当=4时,求y的值.【分析】由于y是的反比例函数,故可说其表达式为y=,只须把=2,y=6代入,求...