第一章三角函数§1.2任意角的三函数1.2.1任意角的三角函数(一)明目标、知重点明目标知重点填要点记疑点探要点究所然内容索引010203当堂测查疑缺04明目标、知重点1.通过借助单位圆理解并掌握任意角的三角函数定义,了解三角函数是以实数为自变量的函数.2.借助任意角的三角函数的定义理解并掌握正弦、余弦、正切函数在各象限内的符号.3.通过对任意角的三角函数定义的理解,掌握终边相同角的同一三角函数值相等.明目标、知重点明目标、知重点1.任意角三角函数的定义(1)在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交于点P(x,y),那么:①y叫做α的,记作,即;②x叫做α的,记作,即;正弦填要点·记疑点sinαsinα=y余弦cosαcosα=x明目标、知重点对于确定的角α,上述三个值都是唯一确定的.故正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,统称为三角函数.(2)设角α终边上任意一点的坐标为(x,y),它与原点的距离为r,则sinα=,cosα=,tanα=.正切③yx叫做α的,记作,即.tanαtanα=yx(x≠0)yrxryx明目标、知重点2.正弦、余弦、正切函数值在各象限的符号明目标、知重点3.诱导公式一终边相同的角的同一三角函数的值,即:sin(α+k·2π)=,cos(α+k·2π)=,tan(α+k·2π)=,其中k∈Z.相等sinαcosαtanα明目标、知重点探要点·究所然情境导学在初中我们已经学过锐角三角函数,知道它们都是以锐角为自变量,以比值为函数值的函数,角的概念推广后,这样的三角函数的定义明显不再适用,如何对三角函数重新定义,这一节我们就来一起研究这个问题.明目标、知重点探究点一锐角三角函数的定义思考1如图,Rt△ABC中,∠C=90°,若已知a=3,b=4,c=5,试求sinA,cosB,sinB,cosA,tanA,tanB的值.答sinA=cosB=ac=35;sinB=cosA=bc=45;tanA=ab=34;tanB=ba=43.明目标、知重点思考2如图,锐角α的顶点与原点O重合,始边与x轴的非负半轴重合,在α终边上任取一点P(a,b),它与原点的距离为r,作PM⊥x轴,你能根据直角三角形中三角函数的定义求出sinα,cosα,tanα吗?答sinα=br,cosα=ar,tanα=ba.明目标、知重点思考3如图所示,在直角坐标系中,以原点为圆心,以单位长度为半径的圆为单位圆.锐角α的终边与单位圆交于P(x,y)点,则有:sinα=,cosα=,tanα=.yxyx明目标、知重点探究点二任意角三角函数的概念yyxx明目标、知重点x2+y2明目标、知重点思考2对...