2.2.2事件的相互独立性(二)高二数学选修2-3复习回顾1、事件的相互独立性设A,B为两个事件,如果P(AB)=P(A)P(B),则称事件A与事件B相互独立。2、相互独立事件同时发生的概率公式:一般地,如果事件A1,A2……,An相互独立,那么这n个事件同时发生的概率等于每个事件发生的概率的积,即(A1·A2……An)=P(A1)·P(A2)……P(An)两个相互独立事件A,B同时发生,即事件A•B发生的概率为:P(AB)=.P(A)P(B)3、如果事件A、B互斥,那么事件A+B发生(即A,B中有一个发生)的概率:P(A+B)=.P(A)+P(B)一般地,如果事件,彼此互斥,那么事件发生(即中恰有一个发生)的概率:12nAAA、、...12nAAA+...+12nAAA、、...1212()()()...()nnPAAAPAPAPA+...+注:1)求积事件的概率必须注意事件的独立性,事件和的概率必须注意事件是否互斥。2)明确事件中的关键词,如,“至少有一个发生”“至多有一个发生”,“恰有一个发生”,“都发生”“都不发生”,“不都发生”。A、B互斥A、B独立()()PAPB1()()PAPB()()PAPB1[()()]PAPB()()PAPB()()PAPB()()()()PAPBPAPB()PAB()PAB()PAB()PABAB()PABABAB1()()PAPB常见类型如下:01例1某班甲、乙、丙三名同学竞选班委,甲当选的概率为,乙当选的概率为,丙当选的概率为。(1)求恰有一名同学当选的概率;(2)求至多有一名同学当选的概率。4535710引申:甲、乙、丙三人向同一飞机射击,设击中的概率分别为0.4、0.5、0.8。如果只有一人击中,则飞机被击落的概率为0.2;如果有两人击中,则飞机被击落的概率为0.6;如果三人都击中,则飞机一定被被击落。求飞机被击落的概率。例2在一段线路中并联着3个自动控制的常开开关,只要其中有1个开关能够闭合,线路就能正常工作.假定在某段时间内每个开关闭合的概率都是0.7,计算在这段时间内线路正常工作的概率.由题意,这段时间内3个开关是否能够闭合相互之间没有影响。027.0)7.01)(7.01)(7.01()](1)][(1)][(1[)()()()(CPBPAPCPBPAPCBAP所以这段事件内线路正常工作的概率是973.0027.01)(1CBAP答:在这段时间内线路正常工作的概率是0.973CBAJJJ、、解:分别记这段时间内开关能够闭合为事件A,B,C.根据相互独立事件的概率乘法式这段时间内3个开关都不能闭合的概率是例3甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为,乙机床...