22.3实际问题与二次函数第二十二章二次函数优翼课件导入新课讲授新课当堂练习课堂小结学练优九年级数学上(RJ)教学课件第2课时商品利润最大问题学习目标1.能应用二次函数的性质解决商品销售过程中的最大利润问题.(重点)2.弄清商品销售问题中的数量关系及确定自变量的取值范围.(难点)导入新课情境引入在日常生活中存在着许许多多的与数学知识有关的实际问题.商品买卖过程中,作为商家追求利润最大化是永恒的追求.如果你是商场经理,如何定价才能使商场获得最大利润呢?利润问题中的数量关系一讲授新课某商品现在的售价为每件60元,每星期可卖出300件,已知商品的进价为每件40元,则每星期销售额是元,销售利润元.探究交流180006000数量关系(1)销售额=售价×销售量;(2)利润=销售额-总成本=单件利润×销售量;(3)单件利润=售价-进价.例1某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出18件,已知商品的进价为每件40元,如何定价才能使利润最大?涨价销售①每件涨价x元,则每星期售出商品的利润y元,填空:单件利润(元)销售量(件)每星期利润(元)正常销售涨价销售2030020+x300-10xy=(20+x)(300-10x)建立函数关系式:y=(20+x)(300-10x),即:y=-10x2+100x+6000.如何定价利润最大二6000②自变量x的取值范围如何确定?营销规律是价格上涨,销量下降,因此只要考虑销售量就可以,故300-10x≥0,且x≥0,因此自变量的取值范围是0≤x≤30.③涨价多少元时,利润最大,最大利润是多少?y=-10x2+100x+6000,当时,y=-10×52+100×5+6000=6250.10052(10)x即定价65元时,最大利润是6250元.降价销售①每件降价x元,则每星期售出商品的利润y元,填空:单件利润(元)销售量(件)每星期利润(元)正常销售降价销售2030020-x300+18xy=(20-x)(300+18x)建立函数关系式:y=(20-x)(300+18x),即:y=-18x2+60x+6000.例1某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出18件,已知商品的进价为每件40元,如何定价才能使利润最大?6000综合可知,应定价65元时,才能使利润最大.②自变量x的取值范围如何确定?营销规律是价格下降,销量上升,因此只要考虑单件利润就可以,故20-x≥0,且x≥0,因此自变量的取值范围是0≤x≤20.③涨价多少元时,利润最大,是多少?当时,6052(18)3x即定价57.5...