2003年考研数学(三)真题解析一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)设其导函数在x=0处连续,则的取值范围是2.【分析】当x0可直接按公式求导,当x=0时要求用定义求导.【详解】当1时,有,0,0,0,1sin1cos)(21xxxxxxxf若若显然当2时,有)0(0)(lim0fxfx,即其导函数在x=0处连续.(2)已知曲线bxaxy233与x轴相切,则2b可以通过a表示为2b64a.【分析】曲线在切点的斜率为0,即0y,由此可确定切点的坐标应满足的条件,再根据在切点处纵坐标为零,即可找到2b与a的关系.【详解】由题设,在切点处有03322axy,有.220ax又在此点y坐标为0,于是有0300230bxax,故.44)3(6422202202aaaxaxb【评注】有关切线问题应注意斜率所满足的条件,同时切点还应满足曲线方程.(3)设a>0,,xaxgxf其他若,10,0,)()(而D表示全平面,则DdxdyxygxfI)()(=2a.【分析】本题积分区域为全平面,但只有当10,10xyx时,被积函数才不为零,因此实际上只需在满足此不等式的区域内积分即可.【详解】DdxdyxygxfI)()(=dxdyaxyx10,102=.])1[(21021012adxxxadydxaxx【评注】若被积函数只在某区域内不为零,则二重积分的计算只需在积分区域与被积函数不为零的区域的公共部分上积分即可.(4)设n维向量0,),0,,0,(aaaT;E为n阶单位矩阵,矩阵TEA,TaEB1,其中A的逆矩阵为B,则a=-1.【分析】这里T为n阶矩阵,而22aT为数,直接通过EAB进行计算并注意利用乘法的结合律即可.【详解】由题设,有)1)((TTaEEAB=TTTTaaE11=TTTTaaE)(11=TTTaaE21=EaaET)121(,于是有0121aa,即0122aa,解得.1,21aa由于A<0,故a=-1.(5)设随机变量X和Y的相关系数为0.9,若4.0XZ,则Y与Z的相关系数为0.9.【分析】利用相关系数的计算公式即可.【详解】因为)4.0()()]4.0([()4.0,cov(),cov(XEYEXYEXYZY=)(4.0)()()(4.0)(YEXEYEYEXYE=E(XY)–E(X)E(Y)=cov(X,Y),且.DXDZ于是有cov(Y,Z)=DZDYZY),cov(=.9.0),cov(XYDYDXYX【评注】注意以下运算公式:DXaXD)(,).,cov(),cov(YXaYX(6)设总体X服从参数为2的指数分布,nXXX,,...