练习4实际问题与二次函数自主学习1.小敏在今年的校运动会跳远比赛中跳出了满意一跳,函数h=3.5t-4.9t2(t的单位:s;h的单位:m)可以描述他跳跃时重心高度的变化.如图26-9所示,则他起跳后到重心最高时所用的时间是()A.0.7lsB.0.70sC.0.63sD.0.36s图26-9答案:D2.行驶中的汽车刹车后,由于惯性的作用,还会继续向前滑行一段距离,这段距离称为“刹车距离”.某车的刹车距离s(m)与车速x(km/h)间有下述的函数关系式:s=0.01x2+0.002x,现该车在限速140kmh∠的高速公路上出了交通事故,事后测得其刹车距离为46.5m,请推测刹车时汽车________(填“是”或“不是”)超速.答案:是3.有一座抛物线型拱桥(如图26-10所示),正常水位时桥下河面宽20m,河面距拱顶4m(1)在如图26-10所示的平面直角坐标系中,求出抛物线解析式;(2)为了保证过往船只顺利航行,桥下水面的宽度不得小于18m,求水面在正常水位基础上涨多少米时,就会影响过往船只?图26-10答案:(1)y=x+4;(2)0.76m4.某商人开始时,将进价为每件8元的某种商品按每件10元出售,每天可售出100件.他想采用提高售价的办法来增加利润,经试验,发现这种商品每件每提价1元,每天的销售量就会减少10件.(1)写出售价x(元/件)与每天所得的利润y(元)之间的函数关系式;(2)每件售价定为多少元,才能使一天的利润最大?答案:(1)y=-10x+280x-1600;(2)14y=(x-8)×[l00-(x-10)×10]=(x-8)(100-10x+100)=(x-8)(-l0x+200)=-10x+280x-1600当x==14,因为y=-10x+280x-1600中的a<0,故此时y有最大值.基础巩固5.某工厂现有80台机器,每台机器平均每天生产384件产品,现准备增加一批同类机器以提高生产总量,在试生产中发现,由于其他生产条件没变,因此每增加一台机器,每台机器平均每天将少生产4件产品.(1)如果增加x台机器,每天的生产总量为y件,请你写出y与x之间的关系式;(2)增加多少台机器,可以使每天的生产总量最大?最大生产总量是多少?答案:(1)y=-4x+64x+30720;(2)增加8台机器,最大生产总量是30976件y=(80+x)(384-4x)=4x+64x+30720因为y=-4x+64x+30720=-4(x-8)2+30976所以x=8时,y最大值=30976.6.如图26-11所示,隧道的截面由抛物线AED和矩形ABCD构成,矩形的长BC为8m,宽AB为2m,以BC所在的直线为x轴,线段BC的中垂线为y轴,建立平面直角坐标系,y轴是抛物线的对称轴,顶点E到坐标原点O的距离为6m.图26-11(1)求抛物线的解析式;(2)如果该隧道内设双行道,现有一辆货运卡车高4.2m,宽2.4m,这辆货运卡车能否通过该...