27.1图形的相似达标训练一、基础·巩固达标1.在比例尺为140000∶的工程示意图上,于年9月1日正式通车的南京地铁一号线(奥体中心至迈皋桥段)的长度约为54.3cm,它的实际长度约为()A.0.2172kmB.2.172kmC.21.72kmD.217.2km2如图27.3-4,在△ABC中,D、E分别是AB、AC的中点,BC=12,则DE与BC的比是()图27.1-4图27.1-5A.14∶B.13∶C.12∶D.23∶3.(1)若,则=__________;(2)若,则k=__________.4.如图27.1-5,在同一时刻,小明测得他的影长为1米,距他不远处的一棵槟榔树的影长为5米,已知小明的身高为1.5米,则这棵槟榔树的高是__________米.5.图27.1-6中,两组图形是否是相似图形?图27.1-66.如图27.1-7,试一试,把下列左边的图形放大到右边的格点图中.图27.1-77.如图27.1-8,已知图中的两个梯形相似,求出未知边x、y、z的长度和∠α、∠β的度数.图27.1-8二、综合•应用达标8.矩形相框如图27.1-9所示,图中两个矩形是否相似?图27.1-99.判断下列各组线段是否成比例?(1)3cm;5cm;7cm;4cm;(2)12mm;5cm;15mm;4cm;(3)1cm;5mm;10mm;2cm.10.试将一个正方形纸片(如图27.1-10)分割为8个相似的小正方形.图27.1-1011.在如图27.1-11所示的相似四边形中,α比β大15°,求未知边x、y的长度和角度α、β的大小.图27.1-11三、回顾•展望达标12.我们已经学习了相似三角形,也知道:如果两个几何图形形状相同而大小不一定相同,我们就把它们叫做相似图形.比如两个正方形,它们的边长,对角线等所有元素都对应成比例,就可以称它们为相似图形.现给出下列4对几何图形:①两个圆;②两个菱形;③两个长方形;④两个正六边形.请指出其中哪几对是相似图形,哪几对不是相似图形,并简单地说明理由.13.定义:若某个图形可分割为若干个都与他相似的图形,则称这个图形是自相似图形.探究:(1)如图甲,已知△ABC中,∠C=90°,你能把△ABC分割成2个与它自己相似的小直角三角形吗?若能,请在图甲中画出分割线,并说明理由.(2)一般地,“任意三角形都是自相似图形”,只要顺次连结三角形各边中点,则可将原三角形分割为四个都与它自己相似的小三角形.我们把△DEF(图乙)第一次顺次连结各边中点所进行的分割,称为1阶分割(如图1);把1阶分割得出的4个三角形再分别顺次连结它的各边中点所进行的分割,称为2阶分割(如图2),…依次规则操作下去,n阶分割后得到的每一个小三角形都是全等三角形(n为正整数),设此时小三角形的面积为Sn.①若△DEF的面积为10000,当n为何...