15、三角形总复习【知识精读】1.三角形的内角和定理与三角形的外角和定理;2.三角形中三边之间的关系定理及其推论;3.全等三角形的性质与判定;4.特殊三角形的性质与判定(如等腰三角形);5.直角三角形的性质与判定。三角形一章在平面几何中占有十分重要的地位。从知识上来看,许多内容应用十分广泛,可以解决一些简单的实际问题;从证题方法来看,全等三角形的知识,为我们提供了一个及为方便的工具,通过证明全等,解决证明两条线段相等,两个角相等,从而解决平行、垂直等问题。因此,它揭示了研究封闭图形的一般方法,为以后的学习提供了研究的工具。因此,在学习中我们应该多总结,多归纳,使知识更加系统化,解题方法更加规范,从而提高我们的解题能力。【分类解析】1.三角形内角和定理的应用例1.如图1,已知ABC中,BACADBC90,于D,E是AD上一点。求证:BEDCABDCE图1证明:由AD⊥BC于D,可得∠CAD=∠ABC又ABDABEEBD则∠∠ABDEBD可证∠∠CADEBD即∠∠BEDC说明:在角度不定的情况下比较两角大小,如果能运用三角形内角和都等于180°间接求得。2.三角形三边关系的应用例2.已知:如图2,在ABC中,ABAC,AM是BC边的中线。求证:AMABAC12CAMBD图2证明:延长AM到D,使MD=AM,连接BD在CMA和BMD中,AMDMAMCDMBCMBM,∠∠,CMABMDBDAC在ABD中,ABBDAD,而ADAM2ABACAMAMABAC212说明:在分析此问题时,首先将求证式变形,得2AMABAC,然后通过倍长中线的方法,相当于将AMC绕点旋转180°构成旋转型的全等三角形,把AC、AB、2AM转化到同一三角形中,利用三角形三边不等关系,达到解决问题的目的。很自然有1212ABACAMABAC。请同学们自己试着证明。3.角平分线定理的应用例3.如图3,∠B=∠C=90°,M是BC的中点,DM平分∠ADC。求证:AM平分DAB。DABMGC图3证明:过M作MG⊥AD于G, DM平分∠ADC,MC⊥DC,MG⊥AD∴MC=MG(在角的平分线上的点到角的两边距离相等) MC=MB,∴MG=MB而MG⊥AD,MB⊥AB∴M在∠ADC的平分线上(到一个角的两边距离相等的点,在这个角的平分线上)∴DM平分∠ADC说明:本题的证明过程中先使用角平分线的定理是为判定定理的运用创造了条件MG=MB。同时要注意不必证明三角形全等,否则就是重复判定定理的证明过程。4.全等三角形的应用(1)构造全等三角形解决问题例4.已知如图4,△ABC是边长为1的等边三角形,△BD...