2010年第十五届“华罗庚金杯”少年数学邀请赛总决赛试卷(三组二试)一、填空题(共3小题,每小题0分,满分0分)1.静水中,甲船速度是乙船速度的两倍.甲、乙两船沿河分别从A、B两地同时出发,相向而行,相遇时距A、B两地的距离之是3:1,如果甲、乙两船分别从B、A两地同时出发,相向而行,相遇时距A、B的距离之比是.2.一个8行n列的阵列队伍,如果排成若干个15行15列的方阵,还余下3人,一人举旗,2人护旗.则n最小等于.3.自△ABC内一点P,分别向BC,CA,AB边引垂线,垂足依次为D,E,F,以AF,BF,BD,CD,CE,AE为直径分别向外作半圆.如图所示这六个半圆面积分别记为S1,S2,S3,S4,S5,S6,若S5﹣S6=2,S1﹣S2=1,那么S4﹣S3=.二、解答题(共3小题,满分0分)4.小华把数字2~9分成4对,使得每对数的和为质数.问一共有多少种不同的分法?5.将1,2,3,…,37,这37个不同的自然数重新排成一行,记作a1,a2,…,a37,其中a1=37,a2=1,并使得a1+a2+…+ak能被ak+1整除(k=1,2,…,36),求a3=?a37=?6.15张卡片,每张卡片上写有3个不同的汉字,任意2张上的汉字不完全相同;任意6张中,一定有2张,它们上面有共同的汉字.问:这15张卡片上最多有多少个不同的汉字?第1页(共5页)2010年第十五届“华罗庚金杯”少年数学邀请赛总决赛试卷(三组二试)参考答案与试题解析一、填空题(共3小题,每小题0分,满分0分)1.静水中,甲船速度是乙船速度的两倍.甲、乙两船沿河分别从A、B两地同时出发,相向而行,相遇时距A、B两地的距离之是3:1,如果甲、乙两船分别从B、A两地同时出发,相向而行,相遇时距A、B的距离之比是5:7.【分析】由甲船速度是乙船速度的两倍先设在静水中乙船速度为x,则甲船速度为2x,水速为y,根据甲、乙两船相向而行,相遇时距A、B两地的距离之比是3:1,可知从A到B为顺水,从B到A为逆水,就可得出第一次相遇时的速度比:(2x+y):(x﹣y)=3:1,即可求出x=4y;那么甲、乙两船分别从B、A两地同时出发,相向而行,第二次相遇时的速度比为:(2x﹣y):(x+y),再由x=4y,即可求出相遇时距A、B的距离之比.【解答】解:设在静水中乙船速度为x,则甲船速度为2x,水速为y,第一次相遇时的速度比:(2x+y):(x﹣y)=3:1,即可求出x=4y;第二次相遇时的速度比为:(2x﹣y):(x+y),因为x=4y,所以(2x﹣y):(x+y)=(2×4y):(4y+y)=7:5,即相遇时距A、B的距离之比5:7.故答案为:5:7...