三角形的分割(一)同学们大家好!三角形的面积的计算方法大家已经知道了,今天我再告诉大家一个规律:等底等高的三角形面积相等。这是一个非常重要的规律,在解决多边形面积的许多问题中都要用到它。今天,我们就一起来研究应用这一规律可以解决哪些问题。【典型例题】一.阅读思考:例1.有一个三角形花坛,想把它平均分成两个相等的三角形,可以怎样分?分析与解答:因为“等底等高的三角形面积相等”,所以要把这个三角形花坛平均分成两个相等的三角形,就是把这个三角形花坛分成两个等底等高的三角形就可以了。而三角形的每条边都可以作三角形的底,所以我们只要把这三条边分别二等分,再把中点与这条边相对的顶点连接起来就可以了。例2.将任一三角形分成面积相等的六个三角形,应怎么分?分析与解:根据等底等高的三角形面积相等这一结论,只要把原三角形分成六个等底等高的小三角形,它们的面积就必然相等。而要找这六个等底等高的小三角形,只需把三角形的某一边六等分,再将各分点与这边相对的顶点连结起来即可。如图(1)图(1)又因为6163223,所以,如果我们把每一个小三角形的面积看成1,即16而32可以看成是先把原三角形等分两份,再把每一份分别等分成三份。易提分旗舰店https://yitifen.tmall.com听听课https://www.tingtingke.com图(2)同理,23可以看成是先把原三角形等分成三份,然后再把每一份等分成两份。即图(3)类似于这样的分法,我们还可以画出许多,这里就不一一列举了。这两道例题有一个共同的思路,就是想办法找出等底等高的三角形,而找这种三角形,就要几等分某一条线段。如果两个三角形的底相等,高不相等,它们的面积有什么关系呢?如果两个三角形底的长度相等,高的长度不相等,那么它们的面积之比正好等于这两个三角形高的长度比。同样的道理,我们还可以推出,如果两个三角形高的长度相等,底的长度不相等,那么这两个三角形的面积之比正好等于它们的底的长度比,因此我们有下面的结论:如果甲、乙两个三角形的底(高)的长度相等,那么甲、乙两个三角形的面积之比等于它们的高(底)的长度之比。例3.把三角形ABC分成甲、乙、丙三部分,使甲的面积是乙的面积的3倍,丙的面积是乙的面积的4倍。分析与解:要想使三角形甲的面积是三角形乙的面积的3倍,可以使这两个三角形的高相同,而三角形甲的底是三角形乙的底的3倍,同样使三角形丙的高和三角形乙的高相同,而三角形丙的底是三角形乙的底的4...