教学目标1.使学生正确理解排列的意义;2.了解排列、排列数的意义,能根据具体的问题,写出符合要求的排列;3.掌握排列的计算公式;4.会分析与数字有关的计数问题,以及与其他专题的综合运用,培养学生的抽象能力和逻辑思维能力;通过本讲的学习,对排列的一些计数问题进行归纳总结,并掌握一些排列技巧,如捆绑法等.知识要点一、排列问题在实际生活中经常会遇到这样的问题,就是要把一些事物排在一起,构成一列,计算有多少种排法,就是排列问题.在排的过程中,不仅与参与排列的事物有关,而且与各事物所在的先后顺序有关.一般地,从个不同的元素中取出()个元素,按照一定的顺序排成一列,叫做从个不同元素中取出个元素的一个排列.根据排列的定义,两个排列相同,指的是两个排列的元素完全相同,并且元素的排列顺序也相同.如果两个排列中,元素不完全相同,它们是不同的排列;如果两个排列中,虽然元素完全相同,但元素的排列顺序不同,它们也是不同的排列.排列的基本问题是计算排列的总个数.从个不同的元素中取出()个元素的所有排列的个数,叫做从个不同的元素的排列中取出个元素的排列数,我们把它记做.根据排列的定义,做一个元素的排列由个步骤完成:步骤:从个不同的元素中任取一个元素排在第一位,有种方法;步骤:从剩下的()个元素中任取一个元素排在第二位,有()种方法;……步骤:从剩下的个元素中任取一个元素排在第个位置,有(种)方法;由乘法原理,从个不同元素中取出个元素的排列数是,即,这里,,且等号右边从开始,后面每个因数比前一个因数小,共有个因数相乘.二、排列数一般地,对于的情况,排列数公式变为.表示从个不同元素中取个元素排成一列所构成排列的排列数.这种个排列全部取出的排列,叫做个不同元素的全排列.式子右边是从开始,后面每一个因数比前一个因数小,一直乘到的乘积,记为,读做的阶乘,则还可以写为:,其中.例题精讲在排列问题中,有时候会要求某些物体或元素必须相邻;求某些物体必须相邻的方法数量,可以将这些7-4-2.排列之捆绑法.题库教师版page1of47-4-2.排列之捆绑法物体当作一个整体捆绑在一起进行计算.【例1】4个男生2个女生6人站成一排合影留念,有多少种排法?如果要求2个女生紧挨着排在正中间有多少种不同的排法?【考点】排列之捆绑法【难度】2星【题型】解答【解析】⑴4男2女6人站成一排相当于6个人站成一排的方法,可以分为六步来进行,第一步,确定第一个位置的人,有6种选择;...