章末检测一、选择题1.由1=12,1+3=22,1+3+5=32,1+3+5+7=42,…,得到1+3+…+(2n-1)=n2用的是()A.归纳推理B.演绎推理C.类比推理D.特殊推理2.在△ABC中,E、F分别为AB、AC的中点,则有EF∥BC,这个问题的大前提为()A.三角形的中位线平行于第三边B.三角形的中位线等于第三边的一半C.EF为中位线D.EF∥BC3.用反证法证明命题“+是无理数”时,假设正确的是()A.假设是有理数B.假设是有理数C.假设或是有理数D.假设+是有理数4.已知f(x+1)=,f(1)=1(x∈N*),猜想f(x)的表达式为()A.B.C.D.5.已知①正方形的对角线相等,②矩形的对角线相等,③正方形是矩形.根据“三段论”推理出一个结论,则这个结论是()A.正方形的对角线相等B.矩形的对角线相等C.正方形是矩形D.其他6.对“a,b,c是不全相等的正数”,给出下列判断:①(a-b)2+(b-c)2+(c-a)2≠0;②a=b与b=c及a=c中至少有一个成立;③a≠c,b≠c,a≠b不能同时成立.其中判断正确的个数为()A.0个B.1个C.2个D.3个7.我们把平面几何里相似形的概念推广到空间:如果两个几何体大小不一定相等,但形状完全相同,就把它们叫做相似体.下列几何体中,一定属于相似体的有()①两个球体;②两个长方体;③两个正四面体;④两个正三棱柱;⑤两个正四棱椎.A.4个B.3个C.2个D.1个8.数列{an}满足a1=,an+1=1-,则a2013等于()A.B.-1C.2D.39.定义在R上的函数f(x)满足f(-x)=-f(x+4),且f(x)在(2,+∞)上为增函数.已知x1+x2<4且(x1-2)·(x2-2)<0,则f(x1)+f(x2)的值()A.恒小于0B.恒大于0C.可能等于0D.可正也可负二、填空题10.从1=12,2+3+4=32,3+4+5+6+7=52中,可得到一般规律为_________.11.如图所示是按照一定规律画出的一列“树型”图,设第n个图有an个“树枝”,则an+1与an(n≥2)之间的关系是______.12.在平面几何中,△ABC的内角平分线CE分AB所成线段的比为=,把这个结论类比到空间:在三棱锥A—BCD中(如图所示),面DEC平分二面角A—CD—B且与AB相交于E,则得到的类比的结论是________.三、解答题13.把下面在平面内成立的结论类比地推广到空间,并判断类比的结论是否成立:(1)如果一条直线和两条平行线中的一条相交,则必和另一条相交;(2)如果两条直线同时垂直于第三条直线,则这两条直线互相平行.14.1,,2能否为同一等差数列中的三项?说明理由.15.设a,b为实数,求证:≥(a+b).16.设a,b,c为一个三角形的...