学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.设随机变量ξ~N(2,2),则D=()A.1B.2C.D.4【解析】 ξ~N(2,2),∴D(ξ)=2.∴D=D(ξ)=×2=.【答案】C2.下列函数是正态密度函数的是()A.f(x)=e,μ,σ(σ>0)都是实数B.f(x)=e-C.f(x)=e-D.f(x)=e【解析】对于A,函数的系数部分的二次根式包含σ,而且指数部分的符号是正的,故A错误;对于B,符合正态密度函数的解析式,其中σ=1,μ=0,故B正确;对于C,从系数部分看σ=2,可是从指数部分看σ=,故C不正确;对于D,指数部分缺少一个负号,故D不正确.【答案】B3.(2015·湖北高考)设X~N(μ1,σ),Y~N(μ2,σ),这两个正态分布密度曲线如图246所示,下列结论中正确的是()图246A.P(Y≥μ2)≥P(Y≥μ1)B.P(X≤σ2)≤P(X≤σ1)C.对任意正数t,P(X≥t)≥P(Y≥t)D.对任意正数t,P(X≤t)≥P(Y≤t)【解析】由图象知,μ1<μ2,σ1<σ2,P(Y≥μ2)=,P(Y≥μ1)>,故P(Y≥μ2)<P(Y≥μ1),故A错;因为σ1<σ2,所以P(X≤σ2)>P(X≤σ1),故B错;对任意正数t,P(X≥t)<P(Y≥t),故C错;对任意正数t,P(X≤t)≥P(Y≤t)是正确的,故选D.【答案】D4.某厂生产的零件外直径X~N(8.0,0.0225),单位:mm,今从该厂上、下午生产的零件中各随机取出一个,测得其外直径分别为7.9mm和7.5mm,则可认为()A.上、下午生产情况均为正常B.上、下午生产情况均为异常C.上午生产情况正常,下午生产情况异常D.上午生产情况异常,下午生产情况正常【解析】根据3σ原则,在(8-3×0.15,8+3×0.15]即(7.55,8.45]之外时为异常.结合已知可知上午生产情况正常,下午生产情况异常.【答案】C5.(2015·山东高考)已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为()(附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ-σ<ξ<μ+σ)=68.26%,P(μ-2σ<ξ<μ+2σ)=95.44%.)A.4.56%B.13.59%C.27.18%D.31.74%【解析】由正态分布的概率公式知P(-3<ξ<3)=0.6826,P(-6<ξ<6)=0.9544,故P(3<ξ<6)===0.1359=13.59%,故选B.【答案】B二、填空题6.已知正态分布落在区间(0.2,+∞)内的概率为0.5,那么相应的正态曲线f(x)在x=________时达到最高点.【导学号:97270054】【解析】由正态曲线关于直线x=μ对称且在x=μ处达到峰值和其落在区间(0.2,+∞)内的概率为0.5,得μ=0.2.【答案】0.27.已知正态总体...