2.3变量间的相关关系1.了解相关关系、线性相关、回归直线、最小二乘法的定义.2.会作散点图,并能利用散点图和定义判断两个变量之间是否具有相关关系.3.会求回归直线方程,并能用回归直线方程解决有关问题.1.相关关系(1)定义:如果两个变量中一个变量的取值一定时,另一个变量的取值带有一定的______性,那么这两个变量之间的关系,叫做相关关系.(2)两类特殊的相关关系:如果散点图中点的分布是从______角到______角的区域,那么这两个变量的相关关系称为正相关,如果散点图中点的分布是从______角到______角的区域,那么这两个变量的相关关系称为负相关.两个变量间的关系分为三类:一类是确定性的函数关系,如正方形的边长与面积的关系;另一类是变量间确实存在关系,但又不具备函数关系所要求的确定性,它们的关系是带有随机性的,这种关系就是相关关系,例如,某位同学的“物理成绩”与“数学成绩”之间的关系,我们称它们为相关关系;再一类是不相关,即两个变量间没有任何关系.【做一做1】下列图形中具有相关关系的两个变量是()[来源:学.科.网Z.X.X.K]2.线性相关(1)定义:如果两个变量散点图中点的分布从整体上看大致在一条______附近,我们就称这两个变量之间具有线性相关关系,这条直线叫做__________.(2)最小二乘法:求线性回归直线方程y=bx+a时,使得样本数据的点到它的______________最小的方法叫做最小二乘法,其中a,b的值由以下公式给出:其中,b是回归方程的____________,a是回归方程在y轴上的______.线性回归分析涉及大量的计算,形成操作上的一个难点,可以利用计算机非常方便地作散点图、回归直线,并能求出回归直线方程.因此在学习过程中,要重视信息技术的应用.【做一做2】某单位为了解用电量y(千瓦时)与气温x(℃)之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:气温/℃181310-1用电量/千瓦时24343864由表中数据得线性回归方程y=bx+a中b≈-2,则a≈__________.答案:1.(1)随机(2)左下右上左上右下【做一做1】CA项中显然任给一个x都有唯一确定的y和它对应,是一种函数关系;B项也是一种函数关系;C项中从散点图可以看出所有点看上去都在某条直线附近波动,具有相关关系,而且是一种线性相关关系;D项中所有的点在散点图中没有显示任何关系,因此变量间是不相关的.[来源:学_科_网]2.(1)直线回归直线(2)距离的平方和-b斜率截距【做一做2】60==10,==40,则a=-b≈40+2×10=60.1...