课时训练5数列的概念与简单表示法一、数列的概念及分类1.下列叙述正确的是()A.数列1,3,5,7与7,5,3,1是相同的数列B.数列0,1,2,3,…可以表示为{n}C.数列0,1,0,1,…是常数列D.数列{nn+1}是递增数列答案:D解析:数列中的项是有序的,故A错;B中通项为{n-1};C中数列为摆动数列,故选D.2.数列5,4,3,m,…是递减数列,则m的取值范围是()A.(-∞,3)B.(-∞,2)C.(1,+∞)D.(2,+∞)答案:A解析:依据递减数列的定义,只要后面的项比它的前一项小即可,所以m的取值范围是(-∞,3).3.下列四个数列中,既是无穷数列又是递增数列的是()A.1,12,13,14,…B.sinπ7,sin2π7,sin3π7,…C.-1,-12,-14,-18,…D.1,√2,√3,…,√21答案:C4.下面的数列中,哪些是递增数列、递减数列、常数列、摆动数列?(1)1,2,3,4,5,6,7,…;(2)10,8,6,4,…;(3)1,0,1,0,1,0,…;(4)a,a,a,a,….解:(1)递增数列,因为从第2项起,每一项都大于它的前一项;(2)递减数列,因为从第2项起,每一项都小于它的前一项;(3)摆动数列,因为从第2项起,数列中有些项大于它的前一项,有些项小于它的前一项;(4)常数列.二、数列的通项公式及应用5.(2015河南南阳高二期中,1)已知数列√5,√11,√17,√23,√29,…,则5√5是它的第()项.A.19B.20C.21D.22答案:C解析:数列√5,√11,√17,√23,√29,…中的各项可变形为√5,√5+6,√5+2×6,√5+3×6,√5+4×6,…,∴通项公式为an=√5+6\(n-1\)=√6n-1,令√6n-1=5√5,得n=21.故选C.6.把1,3,6,10,15,21,…这些数叫做三角形数,这是因为这些数目的点可以排成一个正三角形(如图).则第7个三角形数是()A.27B.28C.29D.30答案:B解析:由已知从第二项起,每一项与前一项的差是这一项的项数,即a2-a1=2,a3-a2=3,a4-a3=4,a5-a4=5,以此规律得a6-a5=6,∴a7-a6=7.∴a7=7+a6=7+6+a5=13+15=28.7.数列{an}的通项公式an=1√n+√n+1,则√10-3是此数列的第项.答案:9解析:an=1√n+√n+1=√n+1−√n,令n=9,则a9=√10−√9=√10-3.∴√10-3是数列中第9项.8.已知数列的通项公式为an=2n2-n.(1)求这个数列的第8项,第10项;(2)试问:45是否是{an}中的项?3是否是{an}中的项?解:(1) an=2n2-n,∴当n=8时,a8=2×82-8=120;当n=10时,a10=2×102-10=190.(2)an=2n2-n,令an=45,则有2n2-n-45=0,解得n=5或n=-92(舍去),∴45是该数列的第5项.令an=3,则有2n2-n-3=0.该方程不存在正整数解,故3不是该数列中的项.9.写出数列的一个通项公式,使它的前几项分别是下列各数.(1)a,b,a,b,…;(2)22-12,32-13,42-14,52-15,…;(3)-11×2,12×3,-13×4,14×5,…;(...