学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.设随机变量X~B(40,p),且E(X)=16,则p等于()A.0.1B.0.2C.0.3D.0.4【解析】 E(X)=16,∴40p=16,∴p=0.4.故选D.【答案】D2.随机抛掷一枚骰子,则所得骰子点数ξ的期望为()A.0.6B.1C.3.5D.2【解析】抛掷骰子所得点数ξ的分布列为ξ123456P所以E(ξ)=1×+2×+3×+4×+5×+6×=3.5.【答案】C3.设ξ的分布列为ξ1234P又设η=2ξ+5,则E(η)等于()A.B.C.D.【解析】E(ξ)=1×+2×+3×+4×=,所以E(η)=E(2ξ+5)=2E(ξ)+5=2×+5=.【答案】D4.某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,遇到红灯时停留的时间都是2min,这名学生在上学路上因遇到红灯停留的总时间Y的期望为()A.B.1C.D.【解析】遇到红灯的次数X~B,∴E(X)=.∴E(Y)=E(2X)=2×=.【答案】D5.设随机变量X的分布列为P(X=k)=,k=1,2,3,4,则E(X)的值为()A.2.5B.3.5C.0.25D.2【解析】E(X)=1×+2×+3×+4×=2.5.【答案】A二、填空题6.今有两台独立工作的雷达,每台雷达发现飞行目标的概率分别为0.9和0.85,设发现目标的雷达的台数为X,则E(X)=________.【导学号:97270049】【解析】X可能的取值为0,1,2,P(X=0)=(1-0.9)×(1-0.85)=0.015,P(X=1)=0.9×(1-0.85)+0.85×(1-0.9)=0.22,P(X=2)=0.9×0.85=0.765,所以E(X)=1×0.22+2×0.765=1.75.【答案】1.757.(2016·邯郸月考)一个均匀小正方体的六个面中,三个面上标有数字0,两个面上标有数字1,一个面上标有数字2.将这个小正方体抛掷2次,则向上的数之积的数学期望是________.【解析】随机变量X的取值为0,1,2,4,P(X=0)=,P(X=1)=,P(X=2)=,P(X=4)=,因此E(X)=.【答案】8.如图232,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X,则X的均值E(X)=________.图232【解析】依题意得X的取值可能为0,1,2,3,且P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)=.故E(X)=0×+1×+2×+3×=.【答案】三、解答题9.某俱乐部共有客户3000人,若俱乐部准备了100份小礼品,邀请客户在指定时间来领取.假设任一客户去领奖的概率为4%.问俱乐部能否向每一位客户都发出领奖邀请?【解】设来领奖的人数ξ=k(k=0,1,…,3000),∴P(ξ=k)=C(0.04)k(1-0.04)3000-k,则ξ~B(3000,...