课时跟踪检测(十三)渐开线与摆线一、选择题1.半径为3的圆的摆线上某点的纵坐标为0,那么其横坐标可能是()A.πB.2πC.12πD.14π解析:选C根据条件可知,圆的摆线方程为(φ为参数),把y=0代入,得φ=2kπ(k∈Z),此时x=6kπ(k∈Z).2.给出下列说法:①圆的渐开线的参数方程不能转化为普通方程;②圆的渐开线也可以转化为普通方程,但是转化后的普通方程比较麻烦,且不容易看出坐标之间的关系,所以常使用参数方程研究圆的渐开线问题;③在求圆的摆线和渐开线方程时,如果建立的坐标系原点和坐标轴选取不同,可能会得到不同的参数方程;④圆的渐开线和x轴一定有交点而且是唯一的交点.其中正确的说法有()A.①③B.②④C.②③D.①③④解析:选C对于一个圆,只要半径确定,渐开线和摆线的形状就是确定的,但是随着选择体系的不同,其在坐标系中的位置也会不同,相应的参数方程也会有所区别,至于渐开线和坐标轴的交点要看选取的坐标系的位置.3.已知一个圆的参数方程为(φ为参数),那么圆的摆线方程中参数取对应的点A与点B之间的距离为()A.-1B.C.D.解析:选C根据圆的参数方程可知,圆的半径为3,那么它的摆线的参数方程为(φ为参数),把φ=代入参数方程中可得即A,∴|AB|==.4.如图ABCD是边长为1的正方形,曲线AEFGH…叫做“正方形的渐开线”,其中AE,EF,FG,GH的圆心依次按B,C,D,A循环,它们依次相连接,则曲线AEFGH的长是()A.3πB.4πC.5πD.6π解析:选C根据渐开线的定义可知,是半径为1的圆周长,长度为,继续旋转可得是半径为2的圆周长,长度为π;是半径为3的圆周长,长度为;是半径为4的圆周长,长度为2π.所以曲线AEFGH的长是5π.二、填空题5.我们知道关于直线y=x对称的两个函数互为反函数,则圆的摆线(φ为参数)关于直线y=x对称的曲线的参数方程为________.解析:关于直线y=x对称的函数互为反函数,而求反函数的过程主要体现了x与y的互换,所以要写出摆线方程关于y=x对称的曲线方程,只需把其中的x,y互换.答案:(φ为参数)6.已知圆的渐开线的参数方程是(φ为参数),则此渐开线对应的基圆的直径是__________,当参数φ=时对应的曲线上的点的坐标为________.解析:圆的渐开线的参数方程由圆的半径唯一确定,从方程不难看出基圆的半径为1,故直径为2.求当φ=时对应的坐标只需把φ=代入曲线的参数方程,得x=+,y=-,由此可得对应的坐标为.答案:27.已知一个圆的摆线过点(1,0),则摆线的参数方程为____...