§2.5平面向量应用举例2.5.1平面几何中的向量方法课时目标经历用向量方法解决某些简单的平面几何问题及其他一些实际问题的过程,体会向量是一种处理几何问题等的工具,发展运算能力和解决实际问题的能力.1.向量方法在几何中的应用(1)证明线段平行问题,包括相似问题,常用向量平行(共线)的等价条件:a∥b(b≠0)⇔________⇔______________________.(2)证明垂直问题,如证明四边形是矩形、正方形等,常用向量垂直的等价条件:非零向量a,b,a⊥b⇔____________⇔______________.(3)求夹角问题,往往利用向量的夹角公式cosθ=______________=___________________.(4)求线段的长度或证明线段相等,可以利用向量的线性运算、向量模的公式:|a|=_______2.直线的方向向量和法向量(1)直线y=kx+b的方向向量为________,法向量为________.(2)直线Ax+By+C=0的方向向量为________,法向量为________.一、选择题1.在△ABC中,已知A(4,1)、B(7,5)、C(-4,7),则BC边的中线AD的长是()A.2B.C.3D.2.点O是三角形ABC所在平面内的一点,满足OA·OB=OB·OC=OC·OA,则点O是△ABC的()A.三个内角的角平分线的交点B.三条边的垂直平分线的交点C.三条中线的交点D.三条高的交点3.已知直线l1:3x+4y-12=0,l2:7x+y-28=0,则直线l1与l2的夹角是()A.30°B.45°C.135°D.150°4.若O是△ABC所在平面内一点,且满足|OB-OC|=|OB+OC-2OA|,则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形5.已知点A(,1),B(0,0),C(,0),设∠BAC的平分线AE与BC相交于E,那么有BC=λCE,其中λ等于()A.2B.C.-3D.-6.已知非零向量AB与AC满足·BC=0且·=,则△ABC的形状是()A.三边均不相等的三角形B.直角三角形C.等腰(非等边)三角形D.等边三角形题号123456答案二、填空题7.如图,在△ABC中,点O是BC的中点,过点O的直线分别交直线AB、AC于不同的两点M、N,若AB=mAM,AC=nAN,则m+n的值为__________________.8.已知平面上三点A、B、C满足|AB|=3,|BC|=4,|CA|=5.则AB·BC+BC·CA+CA·AB=________________.9.设平面上有四个互异的点A、B、C、D,已知(DB+DC-2DA)·(AB-AC)=0,则△ABC的形状一定是__________.10.在直角坐标系xOy中,已知点A(0,1)和点B(-3,4),若点C在∠AOB的平分线上且|OC|=2,则OC=__________________.三、解答题11.在△ABC中,A(4,1),B(7,5),C(-4,7),求∠A的平分线的方程...