2.5等比数列的前n项和2.5.1等比数列前n项和公式的推导与应用从容说课师生将共同分析探究等比数列的前n项和公式.公式的推导以教材中的“错位相减法”为最基本的方法,“错位相减法”也是一种算法,其设计的思路是“消除差别”,从而达到化简的目的.等比数列前n项和公式的推导还有许多方法,可启发、引导学生进行探索.例如,根据等比数列的定义可得,再由分式性质,得,整理得.教学中应充分利用信息和多媒体技术,还应给予学生充分的探索空间.教学重点1.等比数列前n项和公式的推导;2.等比数列前n项和公式的应用.教学难点等比数列前n项和公式的推导.教具准备多媒体课件、投影胶片、投影仪等三维目标一、知识与技能1.了解现实生活中存在着大量的等比数列求和的计算问题;2.探索并掌握等比数列前n项和公式;3.用方程的思想认识等比数列前n项和公式,利用公式知三求一;4.体会公式推导过程中的分类讨论和转化化归的思想.二、过程与方法1.采用观察、思考、类比、归纳、探究得出结论的方法进行教学;2.发挥学生的主体作用,作好探究性活动.三、情感态度与价值观1.通过生活中有趣的实例,鼓励学生积极思考,激发学生对知识的探究精神和严肃认真的科学态度,培养学生的类比、归纳的能力;2.在探究活动中学会思考,学会解决问题的方法;3.通过对有关实际问题的解决,体现数学与实际生活的密切联系,激发学生学习的兴趣.教学过程导入新课师国际象棋起源于古代印度.相传国王要奖赏国际象棋的发明者.这个故事大家听说过吗?生知道一些,踊跃发言.师“请在第一个格子里放上1颗麦粒,第二个格子里放上2颗麦粒,第三个格子里放上4颗麦粒,以此类推.每一个格子里放的麦粒都是前一个格子里放的麦粒的2倍.直到第64个格子.请给我足够的麦粒以实现上述要求.”这就是国际象棋发明者向国王提出的要求.师假定千粒麦子的质量为40g,按目前世界小麦年度产量约60亿吨计.你认为国王能不能满足他的要求?生各持己见.动笔,列式,计算.生能列出式子:麦粒的总数为1+2+22+…+263=?师这是一个什么样的问题?你们计算出结果了吗?让我们一起来分析一下.课件展示:1+2+22+…+263=?师我们将各格所放的麦粒数看成是一个数列,那么我们得到的就是一个等比数列.它的首项是1,公比是2,求第1个格子到第64个格子所放的麦粒数总和,就是求这个等比数列的前64项的和.现在我们来思考一下这个式子的计算方法:记S=1+2+22+23+...