第24课时平面向量数量积的物理背景及其含义课时目标1.理解平面向量数量积的含义;了解平面向量数量积与投影的关系;掌握数量积的性质.2.掌握平面向量数量积的几何意义;掌握平面向量数量积的运算律.识记强化1.已知两个非零向量a,b,我们把|a|·|b|cosθ叫做a与b的数量积(或内积),记作a·b=|a|·|b|cosθ.规定零向量与任一向量的数量积为零,其中θ是a与b的夹角.2.|a|cosθ叫做向量a在b方向上的投影,|b|cosθ叫做b在a方向上的投影.3.两个非零向量互相垂直的等价条件是a·b=0.4.a·b的几何意义是数量积a·b等于a的长度|a|与b在a方向上的投影|b|cosθ的乘积.5.向量数量积的运算律为:(1)a·b=b·a.(2)(λa)·b=λ(a·b)=a·(λb).(3)(a+b)·c=a·c+b·c.课时作业一、选择题1.给出以下五个结论:①0·a=0;②a·b=b·a;③a2=|a|2;④(a·b)·c=a·(b·c);⑤|a·b|≤a·b.其中正确结论的个数为()A.1B.2C.3D.4答案:C解析:①②③显然正确;(a·b)·c与c共线,而a·(b·c)与a共线,故④错误;a·b是一个实数,应该有|a·b|≥a·b,故⑤错误.2.已知向量a,b满足|a|=1,|b|=4,且a·b=2,则a与b的夹角θ为()A.B.C.D.答案:C解析:由题意,知a·b=|a||b|cosθ=4cosθ=2,又0≤θ≤π,所以θ=.3.已知向量a,b满足|a|=1,a⊥b,则向量a-2b在向量a方向上的投影为()A.1B.C.-1D.答案:A解析:设θ为向量a-2b与向量a的夹角,则向量a-2b在向量a方向上的投影为|a-2b|cosθ.又cosθ===,故|a-2b|cosθ=|a-2b|·=1.4.设向量a,b满足|a|=1,|b|=2,a·(a+b)=0,则a与b的夹角是()A.30°B.60°C.90°D.120°答案:D解析:设向量a与b的夹角为θ,则a·(a+b)=a2+a·b=|a|2+|a|·|b|·cosθ=1+1×2×cosθ=1+2cosθ=0,∴cosθ=-.又0°≤θ≤180°,∴θ=120°,选D.5.若|a|=|b|=1,a⊥b,且(2a+3b)⊥(ka-4b),则k=()A.-6B.6C.3D.-3答案:B解析:由题意,得(2a+3b)·(ka-4b)=0,由于a⊥b,故a·b=0,又|a|=|b|=1,于是2k-12=0,解得k=6.6.在Rt△ABC中,∠C=90°,AC=4,则AB·AC等于()A.-16B.-8C.8D.16答案:D解析:AB·AC=|AB|·|AC|cosA=|AC|2=16二、填空题7.一物体在力F的作用下沿水平方向由A运动至B,已知AB=10米,F与水平方向的夹角为60°,|F|=5牛顿,物体从A至B力F所做的功W=__________.答案:25焦耳解析:由物理知识知W=F·s=|F|·|s|co...