重点列表:重点名称重要指数重点1相关关系的判断★★★★重点2线性回归方程有关概念★★★重点3散点图★★★★重点详解:1.变量间的相关关系常见的两变量之间的关系有两类:一类是确定性的函数关系,另一类是________;与函数关系不同,相关关系是一种________关系,带有随机性.2.两个变量的线性相关(1)如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有____________,这条直线叫________.(2)从散点图上看,如果点分布在从左下角到右上角的区域内,那么两个变量的这种相关关系称为________;如果点分布在从左上角到右下角的区域内,那么两个变量的这种相关关系称为________.※(3)相关系数r=,当r>0时,表示两个变量正相关;当r<0时,表示两个变量负相关.r的绝对值越接近________,表示两个变量的线性相关性越强;r的绝对值越接近________,表示两个变量的线性相关性越弱.通常当r的绝对值大于0.75时,认为两个变量具有很强的线性相关关系.3.回归直线方程(1)通过求Q=的最小值而得出回归直线的方法,即使得样本数据的点到回归直线的距离的平方和最小的方法叫做____________.该式取最小值时的α,β的值即分别为,.(2)两个具有线性相关关系的变量的一组数据:(x1,y1),(x2,y2),…,(xn,yn),其回归方程为,则【答案】1.相关关系非确定性2.(1)线性相关关系回归直线(2)正相关负相关(3)103.最小二乘法重点1:相关关系的判断【要点解读】在研究两个变量之间是否存在某种关系时,必须从散点图入手.对于散点图,可以做出如下判断:(1)如果所有的样本点都落在某一函数曲线上,就用该函数来描述变量之间的关系,即变量之间具有函数关系.(2)如果所有的样本点都落在某一函数曲线附近,变量之间就有相关关系.(3)如果所有的样本点都落在某一直线附近,变量之间就有线性相关关系.【考向1】确定性关系与随机关系【例题】下列变量之间的关系不是相关关系的是()A.已知二次函数y=ax2+bx+c,其中a,c是已知常数,取b为自变量,因变量是这个函数的判别式Δ=b2-4acB.光照时间和果树亩产量C.降雪量和交通事故发生率D.每亩施用肥料量和粮食亩产量解:由函数关系和相关关系的定义可知,A中Δ=b2-4ac,因为a,c是已知常数,b为自变量,所以给定一个b的值,就有唯一确定的Δ与之对应,所以Δ与b之间是一种确定的关系,是函数关系.B,C,D中两个变量之间的关系都是相关关系.故选A.【评析】要注意函数关系与相...