温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。课时提升作业(二十二)幂函数(25分钟60分)一、选择题(每小题5分,共25分)1.下列函数中,是幂函数的是()A.y=2xB.y=2x3C.y=D.y=2x2【解析】选C.由幂函数所具有的特征可知,选项A,B,D中x的系数不是1;故只有选项C中y==x-1符合幂函数的特征.【补偿训练】下列函数:①y=x2+1;②y=;③y=3x2-2x+1;④y=x-3;⑤y=+1.其中是幂函数的是()A.①⑤B.①②③C.②④D.②③⑤【解析】选C.由幂函数所具有的特征可知②④符合,而①③⑤中有常数项1,均不符合幂函数的特征.2.(2015·长治高一检测)若幂函数y=(m2-3m+3)xm-2的图象不过原点,则m的取值范围为()A.1≤m≤2B.m=1或m=2C.m=2D.m=1【解析】选D.由题意得解得m=1.3.函数y=x-2在区间上的最大值是()A.B.C.4D.-4【解析】选C.y=x-2在区间上单调递减,所以x=时,取得最大值为4.【延伸探究】若本题的条件不变,则此函数在区间上的最大值和最小值之和为多少?【解析】y=x-2在区间上单调递减,所以x=2时,取得最小值为,当x=时,取得最大值为4.故最大值和最小值的和为.4.在下列函数中,定义域为R的是()A.y=B.y=C.y=2xD.y=x-1【解析】选C.选项A中函数的定义域为[0,+∞),选项B,D中函数的定义域均为(-∞,0)∪(0,+∞).【误区警示】本题在确定函数的定义域时易忽略指数是负数,从而自变量不能为0的情况,导致错选B或D.【补偿训练】设α∈,则使函数y=xα的定义域为R且为奇函数的所有α的值为()A.1,3B.-1,1C.-1,3D.-1,1,3【解析】选A.函数y=x-1的定义域是,函数y=的定义域是[0,+∞),函数y=x和y=x3的定义域为R且为奇函数.5.(2015·荆门高一检测)函数y=|x(n∈N,n>9)的图象可能是()【解析】选C.因为y=|x为偶函数,所以排除选项A,B.又n>9,所以<1.由幂函数在(0,+∞)内幂指数小于1的图象可知,只有选项C符合题意.二、填空题(每小题5分,共15分)6.幂函数f(x)=xα过点,则f(x)的定义域是.【解析】因为幂函数f(x)过点,所以=2α,所以α=-1,所以f(x)=x-1=,所以函数f(x)的定义域是(-∞,0)∪(0,+∞).答案:(-∞,0)∪(0,+∞)7.(2015·铁岭高一检测)若y=a是幂函数,则该函数的值域是.【解析】由已知y=a是幂函数,得a=1,所以y=,所以y≥0,故该函数的值域为[0,+∞).答案:[0,+∞)【补偿训练】(2014·济宁高一检测)当x∈(0,+∞)时,幂函数y=(m2-m-1)xm为减函数,则实数m的值为.【解析】由于函数y=(m2-m-1)xm为幂函数,所以m2-m-1=1,解得m=-1或m=2.当m=2时函数在(0,+∞)上...