第三课时教学目标知识与技能能根据散点分布特点,建立不同的回归模型;知道有些非线性模型通过变换可以转化为线性回归模型;通过散点图及相关指数比较不同模型的拟合效果.过程与方法通过将非线性模型转化为线性回归模型,使学生体会“转化”的思想;让学生经历数据处理的过程,培养他们对数据的直观感觉,体会统计方法的特点,认识统计方法的应用;通过使用转化后的数据,利用计算器求相关指数,使学生体会使用计算器处理数据的方法.情感、态度与价值观通过案例的解决,开阔学生的思路,培养学生的探索精神和转化能力,并通过合作学习,培养学生的团队合作意识.重点难点教学重点:通过探究使学生体会有些非线性模型运用等量变换、对数变换可以转化为线性回归模型;教学难点:如何启发学生“对变量作适当的变换(等量变换、对数变换)”,变非线性为线性,建立线性回归模型.\s\up7()我国是世界产棉大国,种植棉花是我国很多地区农民的主要经济来源,在棉花的种植过程中,病虫害的防治是棉农的一项重要任务,如果处置不当就会造成棉花的减产.其中红铃虫就是危害棉花生长的一种常见害虫,在1953年,我国18省曾发生红铃虫大灾害,受灾面积300万公顷,损失皮棉约二十万吨.如图就是红铃虫的有关图片:红铃虫喜高温高湿,适宜各虫态发育的温度为25~32℃,相对湿度为80%~100%,低于20℃和高于35℃卵不能孵化,相对湿度60%以下成虫不产卵.冬季月平均气温低于-4.8℃时,红铃虫就不能越冬而被冻死.为采取有效防治方法,有必要研究红铃虫的产卵数和温度之间的关系.现收集了红铃虫的产卵数y和温度x之间的7组观测数据列于下表:温度x/℃21232527293235产卵数y/个711212466115325(1)试建立y与x之间的回归方程;并预测温度为28℃时产卵的数目.(2)你所建立的模型中温度在多大程度上解释了产卵数的变化?学生活动:类比前面所学过的建立线性回归模型的步骤,动手实施.活动结果:(1)画散点图:通过计算器求得线性回归方程:y=19.87x-463.73.当x=28℃时,y=19.87×28-463.73≈93,即温度为28℃时,产卵数大约为93.(2)进行回归分析计算得:R2≈0.7464,即这个线性回归模型中温度解释了74.64%产卵数的变化.设计目的:通过背景材料,加深学生对问题的理解,并明白“为什么要学”.体会问题产生于生活,并通过问题的解决复习建立回归模型的基本步骤.提出问题:结合数据可以发现,随着自变量的增加,因变量也随之增加,气温为28℃时,估计产卵数应该低于6...