课时达标检测(二十一)几何概型一、选择题1.在长为12cm的线段AB上任取一点M,并以线段AM为边长作正方形,这个正方形的面积介于36cm2与81cm2之间的概率为()A.B.C.D.答案:D2.(辽宁高考)若将一个质点随机投入如图所示的长方形ABCD中,其中AB=2,BC=1,则质点落在以AB为直径的半圆内的概率是()A.B.C.D.答案:B3.已知函数f(x)=x2-x-2,x∈[-5,5],那么满足f(x0)≤0,x0∈[-5,5]的x0取值的概率为()A.B.C.D.答案:A4.一只小蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,即称其为“安全飞行”,则蜜蜂“安全飞行”的概率为()A.B.C.D.答案:B5.如图,A是圆O上固定的一点,在圆上其他位置任取一点A′,连接AA′,它的长度小于或等于半径的概率为()A.B.C.D.答案:C二、填空题6.设D是半径为R的圆周上的一定点,在圆周上随机取一点C,连接CD得一弦,若A表示“所得弦的长大于圆内接等边三角形的边长”,则P(A)=________.解析:如图所示,△DPQ为圆内接正三角形,当C点位于劣弧上时,弦DC>PD,∴P(A)=.答案:7.在棱长为a的正方体ABCDA1B1C1D1内任取一点P,则点P到点A的距离小于等于a的概率为________.解析:点P到点A的距离小于等于a可以看作是随机的,点P到点A的距离小于等于a可视作构成事件的区域,棱长为a的正方体ABCDA1B1C1D1可视作试验的所有结果构成的区域,可用“体积比”公式计算概率:P==π.答案:π8.(重庆高考)某校早上8:00开始上课,假设该校学生小张与小王在早上7:30~7:50之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为________(用数字作答).解析:设小张与小王的到校时间分别为7:00后第x分钟,第y分钟.根据题意可画出图形,如图所示,则总事件所占的面积为(50-30)2=400.小张比小王至少早5分钟到校表示的事件A={(x,y)|y-x≥5,30≤x≤50,30≤y≤50},如图中阴影部分所示.阴影部分所占的面积为×15×15=,所以小张比小王至少早5分钟到校的概率为P(A)==.答案:三、解答题9.已知点M(x,y)满足|x|≤1,|y|≤1.求点M落在圆(x-1)2+(y-1)2=1的内部的概率.解:如图所示,区域Ω为图中的正方形,正方形的面积为4,且阴影部分是四分之一圆,其面积为π,则点M落在圆(x-1)2+(y-1)2=1的内部的概率为=.10.小朋友做投毽子游戏,首先在地上画出如图所示的框图,其中AG=HR=DR=GH,CP=DP=AE=2CQ.其游...