温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。单元质量评估(四)(第四讲)(90分钟120分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2016·广州高二检测)如果命题P(n)对n=k成立,那么它对n=k+2成立,又若P(n)对n=2成立,则P(n)对所有()A.正整数n成立B.正偶数n成立C.正奇数n成立D.大于1的自然数n成立【解析】选B.根据数学归纳法的意义可知,命题P(n)对所有正偶数n都成立.2.用数学归纳法证明“(n+1)(n+2)…(n+n)=2n·1·2·(2n-1)(n∈N+)”时,从“n=k到n=k+1”时,左边应增加的式子是()A.2k+1B.2k+3C.2(2k+1)D.2(2k+3)【解析】选C.当n=k时,左边=(k+1)(k+2)…(k+k).当n=k+1时,左边=(k+2)(k+3)…(k+k)(k+k+1)(k+1+k+1).可见从“n=k到n=k+1”,左边增加了2(2k+1).3.(2016·金华高二检测)用数学归纳法证明n(n+1)(2n+1)能被6整除时,由归纳假设推证n=k+1时命题成立,需将n=k+1时的原式表示成()A.k(k+1)(2k+1)+6(k+1)B.6k(k+1)(2k+1)C.k(k+1)(2k+1)+6(k+1)2D.以上都不对【解析】选C.因为假设当n=k时命题成立,即k(k+1)(2k+1)能被6整除,当n=k+1时,(k+1)(k+2)(2k+3)=(k+1)(2k2+7k+6)=k(k+1)(2k+1)+6(k+1)2.4.(2016·大连高二检测)在应用数学归纳法证明凸n边形的对角线为n(n-3)条时,第一步检验第一个值n0等于()A.1B.2C.3D.0【解析】选C.因为凸n边形中,边数最少的是三角形,边数为3.5.在数列{an}中,an=1-+-+…+-,则ak+1=()A.ak+B.ak+-C.ak+D.ak+-【解析】选D.a1=1-,a2=1-+-,…,an=1-+-+…+-,ak=1-+-+…+-,所以ak+1=ak+-.6.已知数列{an}中,a1=1,a2=2,an+1=2an+an-1(n∈N+),用数学归纳法证明a4n能被4整除,假设a4k能被4整除,然后应该证明()A.a4k+1能被4整除B.a4k+2能被4整除C.a4k+3能被4整除D.a4k+4能被4整除【解析】选D.由假设a4k能被4整除,则当n=k+1时,应该证明a4(k+1)=a4k+4能被4整除.7.(2016·烟台高二检测)设f(n)=1++++…+,则f(k+1)-f(k)等于()A.B.++C.+D.+【解析】选D.当n=k时,f(k)=1+++…+.当n=k+1时,f(k+1)=1+++…+++….所以f(k+1)-f(k)=+.8.已知n为正偶数,用数学归纳法证明:1-+-+…+=2时,若已假设n=k(k≥2且为偶数)时,等式成立,则还需要利用归纳假设再证()A.n=k+1时等式成立B.n=k+2时等式成立C.n=2k+2时等式成立D.n=2(k+2)时等式成立【解析】选B.偶数k的后继偶数为k+2,故应再证n=k+2时等式成立.【误区警示】解答本题易忽视k的限制条件:k≥2...