温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。课时提升作业二十一导数的运算法则一、选择题(每小题5分,共25分)1.关于x的函数f(x)=cosx+sina,则f′(0)等于()A.0B.-1C.1D.±1【解析】选A.f′(x)=-sinx,f′(0)=0.2.(2016·临沂高二检测)若曲线f(x)=xsinx+1在x=处的切线与直线ax+2y+1=0互相垂直,则实数a等于()A.-2B.-1C.1D.2【解析】选D.f′(x)=sinx+xcosx,f′=1,由题意得-=-1,即a=2.3.(2016·德州高二检测)函数y=(a>0)在x=x0处的导数为0,那么x0等于()A.aB.±aC.-aD.a2【解析】选B.y′===.由=0,得x0=±a.4.已知直线y=kx+1与曲线y=x3+ax+b相切于点(1,3),则b的值为()A.3B.-3C.5D.-5【解析】选A.由点(1,3)在直线y=kx+1上,得k=2,由点(1,3)在曲线y=x3+ax+b上,得1+a+b=3,即a+b=2,y′=3x2+a,由题意得3×12+a=2.所以a=-1.所以b=3.5.(2016·武汉高二检测)正弦曲线y=sinx上一点P,以点P为切点的切线为直线l,则直线l的倾斜角的范围是()A.∪B.[0,π)C.D.∪【解析】选A.因为(sinx)′=cosx,因为kl=cosx,所以-1≤kl≤1,所以αl∈∪.二、填空题(每小题5分,共15分)6.(2016·滨州高二检测)在曲线y=上求一点P,使得曲线在该点处的切线的倾斜角为135°,则P点坐标为.【解析】设点P(x0,y0),y′=′=(4x-2)′=-8x-3,所以tan135°=-1=-8,所以x0=2.所以y0=1.所以P点坐标为(2,1).答案:(2,1)7.(2016·天津高考)已知函数f(x)=(2x+1)ex,f′(x)为f(x)的导函数,则f′(0)的值为.【解题指南】求出f′(x),代入x=0即可.【解析】因为f′(x)=(2x+3)ex,所以f′(0)=3.答案:38.曲线y=xlnx在点(e,e)处的切线方程为.【解析】因为y′=lnx+1,y′=2,所以切线方程为y-e=2(x-e),即2x-y-e=0.答案:2x-y-e=0三、解答题(每小题10分,共20分)9.已知函数f(x)=ax3+bx2+cx过点(1,5),其导函数y=f′(x)的图象如图所示,求f(x)的解析式.【解题指南】本题主要考查利用导数求解参数问题,观察y=f′(x)的图象可知y=f′(x)过点(1,0),(2,0),即f′(1)=0,f′(2)=0.【解析】f′(x)=3ax2+2bx+c,又f′(1)=0,f′(2)=0,f(1)=5,故解得a=2,b=-9,c=12.故f(x)的解析式是f(x)=2x3-9x2+12x.10.已知函数f(x)=的图象在点M(-1,f(-1))处的切线的方程为x+2y+5=0,求函数的解析式.【解析】由于(-1,f(-1))在切线上,所以-1+2f(-1)+5=0,所以f(-1)=-2.因为f′(x)=,所以解得a=2,b=3(因为b+1≠0,所以b=-1舍去).故f(x)=.一、选择题(每小题5分,共10分)1.(2016·临沂高二检测)已知函数f(...