一、选择题1.在平面直角坐标系中,若不等式组(a为常数)所表示的平面区域的面积等于2,则a的值为()A.-5B.1C.2D.3解:2.若不等式组所表示的平面区域被直线y=kx+分为面积相等的两部分,则k的值是()A.B.C.D.3.若实数x,y满足条件目标函数z=2x-y,则()A.zmax=B.zmax=-1C.zmax=2D.zmin=04.在如图所示的坐标平面的可行域内(阴影部分且包括边界),若目标函数z=x+ay取得最小值的最优解有无数个,则的最大值是()A.B.C.D.二、填空题5.设x,y满足约束条件若目标函数z=abx+y(a>0,b>0)的最大值为35,则a+b的最小值为________.解析:可行域如图所示,当直线abx+y=z(a>0,b>0)过点B(2,3)时,z取最大值2ab+3,于是有2ab+3=35,ab=16,所以a+b≥2=2=8,当且仅当a=b=4时等号成立,所以(a+b)min=8.6.已知点P(x,y)满足点Q(x,y)在圆(x+2)2+(y+2)2=1上,则|PQ|的最大值与最小值为.三、解答题7.某营养师要为某个儿童预订午餐和晚餐.已知一个单位的午餐含12个单位的碳水化合物,6个单位的蛋白质和6个单位的维生素C;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的营养中至少含64个单位的碳水化合物,42个单位的蛋白质和54个单位的维生素C.如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?解析:设需要预订满足要求的午餐和晚餐分别为x个单位和y个单位,所花的费用为z元,则依题意得:z=2.5x+4y,且x,y满足即让目标函数表示的直线2.5x+4y=z在可行域上平移,由此可知z=2.5x+4y在(4,3)处取得最小值.因此,应当为该儿童预订4个单位的午餐和3个单位的晚餐,就可满足要求.