第二讲参数方程二、圆锥曲线的参数方程第2课时双曲线的参数方程和抛物线的参数方程A级基础巩固一、选择题1.下列不是抛物线y2=4x的参数方程的是()A.(t为参数)B.(t为参数)C.(t为参数)D.(t为参数)解析:逐一验证知D不满足y2=4x.答案:D2.方程(t为参数)的图形是()A.双曲线左支B.双曲线右支C.双曲线上支D.双曲线下支解析:因为x2-y2=e2t+2+e-2t-(e2t-2+e-2t)=4,且x=et+e-t≥2=2,所以表示双曲线的右支.答案:B3.若曲线(t为参数)上异于原点的不同两点M1,M2所对应的参数分别是t1,t2,则弦M1M2所在直线的斜率是()A.t1+t2B.t1-t2[来源:学_科_网Z_X_X_K]C.D.[来源:Zxxk.Com]解析:依题意M1(2pt1,2pt),M2(2pt2,2pt),所以k===t1+t2.答案:A4.点P(1,0)到曲线(参数t∈R)上的点的最短距离为()A.0B.1C.D.2解析:设Q(x,y)为曲线上任一点,则d2=|PQ|2=(x-1)2+y2=(t2-1)2+4t2=(t2+1)2.由t2≥0得d2≥1,所以dmin=1.答案:B5.P为双曲线(θ为参数)上任意一点,F1,F2为其两个焦点,则△F1PF2重心的轨迹方程是()A.9x2-16y2=16(y≠0)B.9x2+16y2=16(y≠0)C.9x2-16y2=1(y≠0)D.9x2+16y2=1(y≠0)解析:由题意知a=4,b=3,可得c=5,[来源:Zxxk.Com]故F1(-5,0),F2(5,0),设P(4secθ,3tanθ),重心M(x,y),则x==secθ,y==tanθ,[来源:Z。xx。k.Com]从而有9x2-16y2=16(y≠0).答案:A二、填空题6.双曲线的顶点坐标为________.解析:由双曲线的参数方程知双曲线的顶点在x轴,且a=,故顶点坐标为(±,0).答案:(±,0)7.如果双曲线(θ为参数)上一点P到它的右焦点的距离是8,那么P到它的左焦点距离是________.解析:由双曲线参数方程可知a=1,故P到它左焦点的距离|PF|=10或|PF|=6.答案:10或68.过抛物线(t为参数)的焦点作直线交抛物线于A(x1,y1),B(x2,y2)两点,如果x1+x2=6,则|AB|=________.解析:化为普通方程是:x=,即y2=4x,所以p=2.所以|AB|=x1+x2+p=8.答案:8三、解答题9.在平面直角坐标系xOy中,直线l的参数方程为(t为参数),曲线C的参数方程为(θ为参数),试求直线l与曲线C的普通方程,并求出它们的公共点的坐标.解:因为直线l的参数方程为所以消去参数t后得直线的普通方程为2x-y-2=0.①[来源:Z。xx。k.Com]同理得曲线C的普通方程为y2=2x.②①②联立方程组解得它们公共点的坐标为(2,2),.10.过点A(1,0)的直线l与抛物线y2=8x交于M、N两点,求线段MN...