第三章三角恒等变换本章教材分析本章知识框图本章学习的主要内容是两角和与差的正弦、余弦和正切公式,以及运用这些公式进行简单的恒等变换.变换是数学的重要工具,也是数学学习的主要对象之一.在本册第一章,学生接触了同角三角函数公式.在本章,学生将运用向量方法推导两角差的余弦公式,由此出发导出其他的三角变换公式,并运用这些公式进行简单的三角恒等变换.三角恒等变换位于三角函数与数学变换的结合点上.通过本章学习,使学生在学习三角恒等变换的基本思想和方法的过程中,发展推理能力和运算能力,并体会三角恒等变换的工具性作用,学会它们在数学中的一些应用.本章内容安排按两条线进行,一条明线是建立公式,学习变换;一条暗线就是发展推理能力和运算能力,并且发展能力的要求不仅仅体现在学习变换过程之中,也体现在建立公式的过程之中.因此在本章教学中,教师要特别注意恰时恰点地提出问题,引导学生用对比、联系、化归的观点去分析、处理问题,使学生能依据三角函数式的特点,逐渐明确三角函数恒等变换不仅包括式子的结构形式变换,还包括式子中角的变换,以及不同三角函数之间的变换,强化运用数学思想方法指导设计变换思路的意识.突出数学思想方法的教学,在类比、推广、特殊化等一般逻辑思考方法上进行引导,本章不仅关注使学生得到和(差)角公式,而且还特别关注公式推导过程中体现的数学思想方法.例如,在两角差的余弦公式这一关键性问题的解决中体现了数形结合思想以及向量方法的应用;从两角差的余弦公式推出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,在这个过程中,始终引导学生体会化归思想;在应用公式进行恒等变换的过程中,渗透了观察、类比、推广、特殊化、化归等思想方法,特别是充分发挥了“观察”“思考”“探究”等栏目的作用,对学生解决问题的一般思路进行引导,这对学生养成科学的数学思考习惯能起到积极的促进作用.另外,还在适当的时候对三角变换中的数学思想方法作了明确的总结.例如,在旁白中有“倍是描述两个数量之间关系的,2α是α的二倍,4α是2α的二倍,这里蕴含着换元的思想”等,都是为了加强思想方法而设置的.两角和与差的正弦、余弦、正切公式和二倍角公式是历届高考考查的“重点”和“热点”,在高考中占有重要的地位,主要考查对这十一个公式的正用、逆用、变形用,考查对公式的熟练掌握程度和灵活运用能力,其考查难度属低档,这就要求我们不要过分引导学生去挖掘一些特殊的变化技巧,应把主要精力放在学生掌握数学规...