课后提升作业十五抛物线及其标准方程(45分钟70分)一、选择题(每小题5分,共40分)1.(2016·新乡高二检测)设动点C到点M(0,3)的距离比点C到直线y=0的距离大1,则动点C的轨迹是()A.抛物线B.双曲线C.椭圆D.圆【解析】选A.由题意,点C到M(0,3)的距离等于点C到直线y=-1的距离,所以点C的轨迹是抛物线.【补偿训练】(2016·济南高二检测)若动点P与定点F(1,1)和直线3x+y-4=0的距离相等,则动点P的轨迹是()A.椭圆B.双曲线C.抛物线D.直线【解析】选D.由于点F(1,1)在直线3x+y-4=0上,故满足条件的动点P的轨迹是一条直线.2.顶点在原点,焦点是F(0,3)的抛物线标准方程是()A.y2=21xB.x2=12yC.y2=xD.x2=y【解析】选B.由=3得p=6,且焦点在y轴正半轴上,故x2=12y.3.焦点在x轴上,且焦点到准线距离为2的抛物线的标准方程是()A.y2=4xB.y2=-4xC.y2=±2xD.y2=±4x【解析】选D.由抛物线标准方程中p的几何意义知p=2,焦点在x轴的抛物线开口向左,y2=-4x;开口向右,y2=4x.4.抛物线y=ax2的准线方程为y=-1,则实数a的值是()A.B.C.-D.-【解析】选A.由条件知a≠0,则y=ax2可以变形为x2=y,由于准线是y=-1,可知a>0,抛物线标准方程可设为x2=2py(p>0),2p=,则p=,又由于-=-1,知p=2,所以=2,解得a=,故选A.【补偿训练】抛物线y2=ax(a≠0)的焦点到其准线的距离是()A.B.C.|a|D.-【解析】选B.因为y2=ax,所以p=,即焦点到准线的距离为.5.(2016·大连高二检测)已知抛物线的顶点在原点,对称轴为x轴,焦点在双曲线-=1上,则抛物线方程为()A.y2=8xB.y2=4xC.y2=2xD.y2=±8x【解析】选D.由题意知抛物线的焦点为双曲线-=1的顶点,即为(-2,0)或(2,0),所以抛物线的方程为y2=8x或y2=-8x.6.已知抛物线y2=2px(p>0)的焦点为F,点P1(x1,y1),P2(x2,y2),P3(x3,y3)在抛物线上,且2x2=x1+x3,则有()A.|P1F|+|P2F|=|P3F|B.|P1F|2+|P2F|2=|P3F|2C.2|P2F|=|P1F|+|P3F|D.|P2F|2=|P1F|·|P3F|【解析】选C.因为P1,P2,P3在抛物线上,且2x2=x1+x3,两边同时加上p,得2=x1++x3+.即2|P2F|=|P1F|+|P3F|.7.已知点A(2,0),抛物线C:x2=4y的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,则|FM|∶|MN|=()A.2∶B.1∶2C.1∶D.1∶3【解题指南】利用射线FA的斜率和抛物线的定义求解.【解析】选C.射线FA的方程为x+2y-2=0(x≥0).由条件知tanα=,所以sinα=,由抛物线的定义知|MF|=|MG|,所以==sinα==.8.(2016·重庆高二检测)O为坐标原点,F为抛物线C:y2=4x的焦点,P为C上一点,若|PF|=4,则△POF的面积为()A.2B.2C.2D.4【解题指南】由|PF|=4及抛物线的定义求出点...