课堂导学三点剖析一、有限制条件的组合问题——“在”与“不在”问题【例1】一个口袋内装有大小相同的7个白球和1个黑球.(1)从口袋内取出3个球,共有多少不同的取法?(2)从口袋内取出3个球,使其中含有1个黑球,共有多少种取法?(3)从口袋内取出3个球,使其中不含黑球,共有多少取法?解析:(1)从口袋内的8个球中取出3个球,取法种数是=56答:从口袋内取出3个球,共有56种取法.(2)从口袋内取出的3个球中有1个是黑球,于是还要从7个白球中再取出2个,取法种数是=21.答:取出含有1个黑球的3个球,共有21种取法.(3)由于所取出的3个球中不含黑球,也就是要从7个白球中取出3个球,取法种数是=35答:取出不含黑球的3个球,共有35种取法.温馨提示(1)从n个不同的元素中,每次取出m个不同元素的组合,其中一个必须在内.这类问题的思考方法是先将这个特定元素置于其内,则只需由余下的n-1个元素中每次取出m-1个元素,再汇总原置于内的特定元素,所以符合条件的种数为.(2)从n个不同的元素中,每次取出m个不同元素的组合,其中某一元素不能在内.这类问题有两种思考方法:①将这个特定元素选出,而从其余的n-1个元素中每次取m个不同元素的组合,这些组合显然必符合条件,为种;②以间接法解之,即从不带附加条件的总数中,减去不合本题条件的数,为-种.二、有限制条件的组合问题——“至多”“至少”问题【例2】从4台甲型和5台乙型电视机中任意取出3台,其中至少要有甲型与乙型电视机各一台,则不同的取法共有()A.140种B.84种C.70种D.35种思路分析:取出的3台电视机中要求至少有甲型与乙型各一台,它包括两种可能:2甲1乙或1甲2乙,所以可用分类计数原理和分步计数原理解决,另外也可以采用间接法.解法一从4台甲型电视机中取2台且从5台乙型电视机中取1台,有种取法;从4台甲型电视机中取1台且从5台乙型电视机中取2台有种取法,所以取出的3台电视机中至少要有甲型与乙型各一台的取法共有+=70(种).解法二从所有的9台电视机中取3台有种取法,其中全为甲型的有种取法,全为乙型的有种取法,则至少有甲型与乙型各一台的取法有--=70(种).答案:C温馨提示本题解法一用了直接法,解法二用的是间接法;本题最易出现如下取法错误=140(种).这样计算就出现了重复.三、求组合题的原则——“正难则反”【例3】空间中有8个点,有且只有4个点共面,共可确定多少个平面?解析:利用间接法:不考虑限制条件,从8个点中任取3个点共有种取法,由于其中4个点共面,从这4...